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 There has not been a new or significantly revised textbook 

on Reactor Theory published for a number of years.  In the 

meantime, computer codes have become more sophisticated and more 

universally available, and virtually every student has access to 

a computer.  While a number of rather excellent older books 

exist, they usually contain at least one of two specific 

shortcomings.  Either the books teach historic Reactor Theory, or 

they serve as compendia of knowledge for the advanced graduate 

student or researcher. 

 The purpose of the present work is very simply to teach the 

beginning graduate or undergraduate nuclear engineering student, 

who may have little or no previous knowledge of the field, the 

basic principles and ideas of present-day reactor physics design. 

The approach taken here is oriented towards the understanding and 

use of computer methods, but the material is carefully arranged 

so as to give a reasonable analytic foundation for the solutions. 

 The underlying physics and mathematics is continually 

emphasized. 

 Above all, the development of the ideas behind the methods 

is stressed.  Where necessary, rigor has been sacrificed in order 

to present a detailed description of the essential underlying 

ideas.  Advanced research areas are mentioned in many cases, but 

a conscious attempt has been made to keep the scope of the work 

confined to what material a first year graduate student should 

reasonably be expected to be exposed to in a single year.  For 

many students, what is presented here is enough, because they 

will work in other areas of nuclear engineering.  But for those 

who are interested in Reactor Theory as a career, this text 

should enable them to move to the advanced books and to tackle 

the literature. 

 The first three chapters are introductory in nature, and are 



intended primarily as reference material for self-study.  For a 

two-semester course, a reasonable division of the material would 

be coverage of chapters four through eight in the first semester 

and chapters nine through twelve in the second semester.  A 

normal undergraduate program can reasonably be expected to have 

covered the equivalent of chapters one through eight, so that 

students with a bachelor's degree in nuclear engineering should 

be able to start the second semester directly. 

 As a departure from previous texts, a number of the problem 

sets given herein depend upon the use of commercial reactor 

design computer codes.  These codes are available from the 

National Energy Software Center at Argonne National Laboratory or 

from the Oak Ridge Radiation Shielding Information Center.  A 

number of these codes run on a PC.  Problems are usually assigned 

to groups of two students, and each problem or problem set 

attempts to illustrate an idea, such as spatial reactor kinetics, 

which is difficult to demonstrate otherwise.  On the other hand, 

there is great value in doing analytical derivations, which 

provide insight and understanding, and problems along these lines 

have not been neglected.  The problems are considered to be an 

integral part of each chapter and not simply an appendage. 

 In the effort to produce this Third Edition of Reactor 

Theory and Design, I would like to gratefully acknowledge the 

help of Pamela Lockley and Vickie Thomas who did an excellent job 

of typing the manuscript in WORDPERFECT, from which the current 

form in Microsoft WORD, complete with figures, was extracted. 

 

      Roger A. Rydin 

      Charlottesville, Virginia 

      July 2003 
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 CHAPTER 1 
 

INTRODUCTION 
 
 
  

 1.1 Background 
 
 

 In 1932, Chadwick discovered that neutrons were emitted when 

alpha particles struck light materials such as beryllium.  Soon 

afterwards, scientists bombarded many elements with neutrons in 

order to transmute these elements into new and heavier isotopes. 

In December of 1939, the German chemists, Otto Hahn and Fritz 

Strassmann discovered that some of the products from bombarding 

uranium with neutrons were lighter elements having about half the 

mass of uranium!  Their colleagues, Lisa Meitner and Otto Frisch, 

soon worked out that the uranium was actually undergoing fission. 

 Fast neutrons were subsequently found to also be a byproduct 

of fission.  Soon afterwards, the properties of natural uranium 

had been sufficiently well measured to be able to say something 

positive about the possibility of producing a sustained neutron 

chain reaction in a potentially controlled fashion. Natural 

uranium is composed of about 99.3% of the isotope U238

92
, and only 

0.7% of the isotope U235

92
. The abundant isotope fissions, with a 

low probability, only for neutrons having energies above 1.3 MeV. 

This isotope is also a strong parasitic absorber of neutrons in 

the range of 6 to 1000 eV, where it has strong absorption 

resonances.  On the other hand, the rare isotope fissions readily 

for neutrons having energies of less than an electron volt, which 

are called slow or thermal neutrons.  Hence, the real question 

was whether or not the production of neutrons due to the fission 

of the U235

92  could overcome the capture of neutrons in the more 

abundant U238

92  isotope and other surrounding materials. 
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 Fission neutrons are born with energies in the range of 0.1 

to about 10 MeV.  Hence, in order to cause a significant amount 

of fission in U235

92
, these neutrons have to be slowed down by 

elastic collisions with other materials called moderators.  

Moderators are relatively light isotopes, because the most 

efficient energy transfer occurs when the masses of the colliding 

particles are equal or nearly so.  However, a good moderator must 

also be a poor absorber, otherwise too many neutrons would be 

lost in the process of slowing down.  Physical and chemical 

stability are also desirable properties of moderators. 

 The most commonly used moderator materials are water, heavy 

water, beryllium and graphite.  Water is abundant, and also has 

useful properties as a coolant medium.  Unfortunately, the 

absorption of neutrons by the hydrogen in water is sufficiently 

great that a chain reaction cannot be sustained using natural 

uranium.  An enrichment of the isotope U235

92
 to the range of 2 to 

3% is needed to make the reaction feasible. Water moderated and 

cooled systems of this type are called Pressurized Water Reactors 

(PWRs) or Boiling Water Reactors (BWRs). Heavy water is a much 

better moderator than light water, because deuterium is a poor 

neutron absorber.  Unfortunately, it is not easy to separate 

heavy water from light water, and high purity is needed to 

prevent too much absorption in the light water fraction.  At 

present, most reactors use light water and slightly enriched 

uranium, rather than expensive heavy water and natural uranium. 

However, the Canadians manufacture a pressure tube reactor system 

using heavy water that is known by the acronym CANDU. 

 Beryllium has also been used in a variety of small reactors. 

Being a metal, it is readily machined into a variety of shapes.  

Unfortunately, beryllium is also toxic in a chemical sense, so 

that it must be handled with care.  Furthermore, if any 

significant amount of power is produced in the reactor, a coolant 

such as water is also needed. 
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 Finally, graphite has been found to be a very fine 

moderator, at least after it has been chemically treated to 

remove natural impurities.  Graphite is a strong readily machined 

solid, with a very high thermal heat capacity, that can operate 

at temperatures over 1000 C.  Graphite moderated reactors usually 

use carbon dioxide or helium gas as a coolant, and such systems 

are called High-Temperature Gas-cooled Reactors (HTGRs). 

 

 

 1.2 Historical Approach 

 

 At the time when nuclear reactors were first being 

considered, there were no computers!  Hence, it was necessary to 

develop analytical methods to solve the problem.  A very wide 

range of energies had to be considered, with very strong neutron 

absorption and scattering resonance behavior occurring over parts 

of the spectrum.  Strong local effects were expected for local 

heterogeneities, and global spatial effects were expected due to 

the relative arrangement of fuel and moderator materials.  The 

approach that was taken was to partition the problem into a 

multiplicative set of terms, each representing a different 

phenomenological part of the problem.  Thus was born the 4-factor 

formula for an infinitely large reactor, and the 6-factor or 7-

factor formula for a finite-sized reactor. 

 The 4-factor formula is represented by the simple expression 

where the various terms are defined in words as follows: 

  k  k-infinity is the multiplication factor of an infinite 

array of this material, where multiplication is defined 

as the number of slow neutrons produced per slow 

neutron absorbed; 

  eta is the number of fast neutrons produced by fission 

 pf,  =  k  (1.1) 
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per thermal neutron absorbed in the fuel material.  It 

is composed of the fission-to-absorption fraction in 

the fuel times the number of neutrons produced per 

fission, which is called nu, ; 

  epsilon is the fast fission factor, representing the 

enhancement of thermal fissions by fast neutron 

fissions in the U238

92
; 

 p is the resonance escape or non-absorption probability, 

which represents the fraction of fast neutrons that 

escape capture during the moderation process to become 

thermal or slow neutrons; and 

  f is the thermal utilization factor, or fraction of 

thermal neutrons captured in the fuel where they can 

cause fission, compared to capture in all materials 

present. 

 Each of these factors was calculated by an appropriate 

analytical approach.  For a chain reaction to occur, the value of 

k  has to be greater than unity.  The factor  depends on the 

fuel, and is typically between 1.5 and 1.8. The factor  is 

usually only slightly greater than unity.  Hence, the most 

important design factors are p and f.  As the degree of fuel 

lumping in plates or pins increases, p rises because a greater 

fraction of neutrons slows down in the moderator that surrounds 

the lump.  On the other hand, as the degree of fuel lumping 

increases, the center portion of the lump is shielded from 

thermal neutrons by absorption in the outer layers, and f 

decreases.  Hence, there is an optimum lump size where k  reaches 

a maximum. 

 The behavior of a finite-size reactor is obtained by adding 

in three new factors related to the physical size of the system 

and the mean distances a fast neutron and a thermal neutron can 

travel in the reactor material.  This relationship is written as 
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where the new factors are defined in words as follows: 

 keff k-effective is the multiplication factor of a finite 

reactor, given in terms of thermal neutrons produced 

per thermal neutron absorbed or lost across the 

boundaries of the reactor; 

  tau is the age, which is actually related to the mean-

square distance a fast neutron can move from its 

birthplace in the medium; 

 L
2
 is the diffusion length squared, which is related to 

the mean-square distance a thermal neutron can move in 

the medium, and 

 B
2
  is the buckling, related to the inverse square of the 

characteristic size of the reactor. 

 Although the 4-factor and 7-factor formulas were of great 

value in the early days of reactor theory, they are not relevant 

today.  All of the pertinent quantities are defined or derived 

from those interactions that actually take place in the reactor, 

namely, neutrons reacting with the atoms of material comprising 

the reactor.  Nonetheless, these factors do have value in 

summarizing what is happening in a phenomenological sense, and 

thus they aid in our understanding of reactor design trade-offs. 

 As a matter of fact, there are only two quantities that are 

of primary interest in reactor theory and design.  These are: 

 1. the neutron density distribution function at any 

spatial position r

; and,  

 2. the corresponding reaction rates for the various 

possible reactions occurring at this location. 

Consider a schematic diagram of a reactor and its surroundings 

(Figure 1.1).  The definition of the outer boundary is rather 

arbitrary.  If one is interested mainly in the fuel-bearing 

  ,
B)  +  L(  +  1

k
  =  k

22eff  (1.2) 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

6 

  

region called the core, then the boundary is usually set near the 

edge of the core so that essentially all of the neutron reactions 

take place within the boundary.  On the other hand, if one is 

interested in the problem of shielding personnel from the 

radiation emitted by the core, then the boundary must extend out 

to the point of interest, which may be several meters away from 

the core.  The latter problem is sometimes decoupled from the 

former, by replacing the core region by an effective surface 

source. 

 

 Fig. 1.1 Reactor and Surroundings 

 

 

 1.3 Neutron Density 

 

 When we consider the neutron density at position r

, we are 

interested not only in how many neutrons are located at r

 per 

unit volume, but also in how fast they are traveling and in what 

directions they are traveling.  In addition, we would like to 

know how this quantity varies with time.  The neutron density 

distribution function is actually a 7-dimensional quantity that 
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can be written as  

 We have already denoted the position in space by the vector 

r

.  The velocity components can then be given in terms of the 

scalar speed v and a unit direction vector 

 such that the 

velocity vector is v

 = v


.  In this case, the neutron density 

is often written as 

Furthermore, since the energy of a neutron is related to its 

speed by ,
2

mv
 = E

2

 we can also write the neutron density as 

Finally, in real reactors, the energy range of interest varies 

from 10 MeV down to a fraction of an eV, or over 9 to 10 decades, 

while the magnitude of the neutron density per unit energy also 

spans a number of decades.  It then becomes convenient to 

introduce a dimensionless logarithmic variable called lethargy, 

defined as  

where Eo is typically taken to be 10 MeV and corresponds to  

u = 0.  For a real reactor, the lethargy varies over a linear 

range of 0 to 20.  Hence, the neutron density distribution 

function can also be written as 

 1.4 Reaction Rates 

  

 Reaction rates are governed by: the number of neutrons 

 t).,v,v,vz,y,n(x, zyx  
 

 t).v,,,r


n(  
 

 t).E,,,r


n(  
 

  ,
E

E
   u  oln  (1.3) 

 t).u,,,r


n(  
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present, the speed at which they approach the target nuclei, the 

number of target nuclei present, and the probability that the 

nucleus will interact with the neutron.  If we consider that the 

size of the nucleus is of the order of 10
-13
 cm while the size of 

an atom is of the order of 10
-8
 cm, we realize that matter is 

mostly empty space.  The chance of a neutron actually hitting a 

nucleus in a pure billiard ball type of collision is extremely 

small, as indicated schematically in Figure 1.2.  Recall that a 

neutron carries no charge and therefore does not interact with 

the electric fields of the nucleus or its surrounding electrons. 

 Using quantum mechanics, however, we can ascribe wave properties 

to the neutron.  In this case, it can be seen that the neutron 

does not have to actually hit the nucleus in order to interact 

with it.  For a collision, it is only necessary to have a portion 

of the neutron wave strike the nucleus, as shown in Figure 1.3. 

 

 

 Fig. 1.2 Neutron-nucleus Interaction on a Particle Basis 
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 Fig. 1.3 Neutron-nucleus Interaction on a Wave Basis 

 

 We can graphically represent the probability of having a 

given interaction take place by drawing a shaded region about the 

nucleus whose cross-sectional area is proportional to the 

reaction probability, as shown in Figure 1.4.  We call this the 

neutron "cross section", and denote it here by the symbol ij(v) 

for reactions of the jth type with a nucleus of type i.  This 

probability is a function of the relative velocity between the 

neutron and the nucleus. 

  

 

 Fig. 1.4 Diagrammatic Representation of the Neutron Cross   

              Section 
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 The number of interactions that take place per unit time in 

a given volume is proportional to the densities of both neutrons 

and nuclei, the reaction cross section, and the relative speed of 

approach.  Therefore, the reaction rate is 

where Ni( r

) is the atom density of the ith atom type.  The atom 

density can be calculated from the equation 

where  is the density and M is the molecular weight of the 

compound.  The remaining term, Na = 6.025 x 10
23
 molecules/mole, 

is Avagadro's number.  For example, water has a density of  

 = 1 g/cm
3
 and a molecular weight of M = 18.  Hence,  

N = 0.0333 x 10
24
 molecules/cm

3
.  The individual atom densities 

are then obtained from the molecular formula.  In this case, 

there are two hydrogen atoms and one oxygen atom per molecule.  

Hence NH = 0.0666 x 10
24
 atoms/cm

3
 and No = 0.0333 x 10

24
 

atoms/cm
3
.  If the water contained a small fraction of heavy 

water, then the appropriate hydrogen and deuterium atom densities 

could be obtained using the isotopic fractions. 

 The second two factors on the right-hand side of Eq. (1.4) 

give what is known as the macroscopic cross section, denoted by 

the symbol , i.e., 

Microscopic cross sections are usually quite small, so that a 

special unit called the "barn" has been coined, where  

1 barn = 10
-24
 cm

2
.  Most cross sections are of the order of 

magnitude of a barn, although there are notable exceptions.  

Since N contains a factor of 10
+24
, a usual practice in computer 

 , 
sr-ev-s-cm

ons interacti
  )r(N(E)t)E,,,rvn( = t)E,,,r

3iij


  (Rij  (1.4) 

  ,
cm

molecules
     

M

N
  =  N

3

a
 (1.5) 

 .cm  v),r(   )rv -1
ij


  (N)( iij  (1.6) 
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codes is to enter cross sections in barns and atom densities in 

atoms/barn-cm, so that these scale factors cancel. 

 The first two factors on the right-hand side of Eq. (1.4) 

are often grouped together into a quantity called the angular 

neutron flux, i.e., 

Thus, the reaction rate is given as the product of the flux and 

the macroscopic cross section, 

 Actually, the full definition of the angular flux contains 

more detail than we normally need.  By integrating over the 

angular dependence, we obtain the energy-dependent flux, 

By next integrating over energy, we obtain the total, or one-

speed flux 

 Simple approximate relationships can be written for the 

energy-dependent flux over various ranges of the energy spectrum. 

The fission flux can be represented approximately over the range 

from 0.1 to 10 MeV as 

where C1 is a normalization constant and E is given in 

dimensionless units corresponding to MeV.  The slowing down 

region from 1 eV to 0.1 MeV can be represented approximately as a 

 .
sr-ev-s-cm

neutrons
     t )v,,,r(  t )v,,,rv

2


  n(  (1.7) 

 .
sr-ev-s-cm

ons interacti
     t )E,,,r(E),r( = t)E,,,r

3ij


  (Rij  (1.8) 

 . 
eV-s-cm

neutrons
     d t)E,,,r(  = t)E,,r

2


  (  (1.9) 

 .
s-cm

neutrons
     dE t)E,,r( = t),r

2


  (  (1.10) 

 ,e E C  =  (E) -E
1  (1.11) 
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one-over-E flux, 

where C2 is a constant. Finally, the thermal region, from 0 to 1 

eV, can be represented by a Maxwellian distribution at the 

temperature of the moderator, namely 

where C3 is a constant, E is in  units of eV, T is the 

temperature in degrees Kelvin, and k = 8.6173 x 10
-5
 eV/ K is 

Boltzmann's constant. 

 It is typical to define some "room temperature" constants.  

At To = 293 K, the energy of the most probable neutron is  

Eo = kTo = 0.025 eV, which corresponds to a velocity of vo = 2200 

m/s.  The absorption cross sections for most materials in the 

thermal energy range vary as one-over-v, and can be represented 

by the equation 

where ao is the 2200 m/s cross section. 

 The average absorption cross section over a Maxwellian 

distribution at a temperature T can then be obtained from the 

relationship 

Hence, we look up the 2200 m/s cross section, multiply it by 

0.886, and correct it for temperature to obtain the average value 

that is used with the one-speed flux to obtain the reaction rate 

in a Maxwellian spectrum.  Scattering cross sections, on the 

other hand, tend to be relatively constant over the thermal 

  ,
E

C
  =  (E) 2

 (1.12) 

  ,e E C  =  (E) -E/kT
3  (1.13) 

  ,   =  o
aoa

v

v
 (1.14) 

 . 
T

T
   

4
  =  o

aoa  (1.15) 
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range, so they are treated differently. 

 

 

 1.5 Design Approximations 

 

 For full information on the neutron density and the reaction 

rates, we need seven variables.  This is generally beyond our 

computational abilities, even with the largest modern computers. 

Therefore, we usually make approximations in a sequential and 

iterative fashion to eventually obtain a valid synthesis of the 

actual problem solution. For example, detailed energy-dependent 

calculations are usually done as space- and time-independent 

computations for several different spatial regions of interest in 

a reactor.  Average values over a gross energy representation 

(discretization into few-groups) are then used in detailed 1-,  

2-, or 3-dimensional, time-independent, spatial flux calculations. 

The angular dependence is often averaged out leading to Diffusion 

theory as opposed to the full representation that is called 

Transport theory; this is a savings of two dimensions.  Time-

dependent problems using few-group diffusion theory rarely contain 

more than two spatial dimensions; and so on. 

 A desirable check of any approximation to the theory is an 

experiment that can be used to validate the calculations!  Of 

course the experiments may be in error, so sometimes theory and 

experiment are used iteratively to validate each other.  The 

nuclear industry has successfully validated its design methods to 

agree with experiment. 

 As a final comment, one saving grace in the study of reactor 

theory is the fact that the neutron density is rarely greater 

than 10
10
 per cm

3
 while typical atom densities are of the order of 

10
23
.  Therefore, neutron-neutron collisions are extremely rare 

and the mathematical problem formulation is linear, which is an 

important simplification. 
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 1.6 Reactor Design Implications 

 

 We have discussed the fact that the two most important 

quantities in reactor physics calculations are the neutron 

density, n( r

,

,E,t), and the reaction rate with the ith type of 

nuclide, which can symbolically be written as Ri( r

,

,E,t).  We 

know the initial spatial distribution of all of the isotopes in 

the reactor. We must calculate the neutron density in the reactor 

at a given total operating power level that corresponds to the 

initial material distribution and any external sources that may 

be present. 

 Once we know the neutron density, the reaction rates are 

fully determined; these tell us, by virtue of simple rate 

equations, how the quantities of various isotopes that are 

present vary with time.  Some isotopes burn up, such as 
235
U and 

10
B.  Others are produced, such as the fission product 

135
Xe which 

has a very large (3 x 10
-18
 cm

2
) absorption cross section. 

 In turn, changes in the material properties affect the 

operating state of the reactor.  In a sense we have a nontrivial 

feedback control problem (see Figure 1.5) where the object is to 

maintain the total power production at a desired value for a 

period of several months to years.  We must compensate for all of 

the property changes that occur during the time period while 

preserving safety margins and material integrity constraints.  In 

addition, as nuclear engineers, we want to make the entire 

process as economical as possible.  This is, in essence, the 

process of reactor design. 

 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

15 

  

 

 Fig. 1.5 Schematic Reactor Operation Diagram 

 

 

 

 

 

  Problems 

 

1.1 This question concerns the relationship between energy, 

lethargy, velocity, and wavelength. 

       a) If Eo is taken to be 10 MeV, find the values 

of energy E that correspond to each integer 

value of lethargy u from 0 to 20. 

b) What are the corresponding neutron 

velocities, v, if the velocity of a "thermal" 

neutron at Eo = 0.025 eV is vo = 2200 m/s? 

c) What are the corresponding neutron 

wavelengths ?  How do these compare to the 

size of a typical atom?  Use  

 = 2.86 X 10
-9
/ E , where E is in eV and  

                    is in cm. 
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1.2 The ceramic material UO2 has a sintered density of 10.7 

g/cm
3
. 

       a) If the uranium is 3% enriched in 
235
U, find 

the number densities of all of the 

constituent atoms in the uranium dioxide 

fuel. 

       b) If the average total microscopic cross 

sections of the constituent atoms are 25 = 

680 barns, 28 = 2.7 barns, and o = 0.18 

barns, find the macroscopic total cross 

section T for UO2. 

 

1.3 A reactor shield is made up of a mixture of granulated lead 

in polyethylene.  The resulting sheets contain 50% Pb208

82
 by 

weight and the rest is polyethylene whose chemical formula 

can be assumed to be CH2.  If the measured density of the 

sheet is 3.0 g/cm
3
, compute the atom densities of Pb, C and 

H. 

 

1.4 The material B4C is often used in control rods.  B4C has a 

density of 2.52 g/cm
3
 and a molecular weight of 55.26.  

Natural boron contains 20% of the 
10
B isotope and 80% of the 

11
B isotope by weight. The 2200 m/s absorption cross 

sections for 
10
B, 

11
B, and 

12
C are 3840, 0.0055 and 0.0034 

barns, respectively. 

       a) Find the total macroscopic thermal absorption 

cross section, a, for B4C in a Maxwellian 

spectrum at a temperature of 500 K. 

       b) The thermal neutron scattering cross sections 

are 2.2, 3.9 and 4.75 barns, respectively.  

Find the total macroscopic scattering cross 

section, s. 
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1.5 A region in a reactor contains the following atom densities, 

                 H --  0.010 x 10
24
 atoms/cm

3
 

                 B --  0.001 x 10
24
 atoms/cm

3
 

                 C --  0.002 x 10
24
 atoms/cm

3
. 

 Assuming that the material is in a Maxwellian thermal 

neutron distribution at T = 320 K (47 C), compute the 

diffusion coefficient D for this material. As an 

approximation, take 

1.6 The total neutron flux, averaged over direction and energy, 

is typically 10
13
 n/cm

2
-s at the center of a power reactor.  

Assume T = 600 K. 

      a) What is the neutron density at this position? 

b) If the macroscopic absorption cross section of the 

235
U at this location is 25 = 0.068 cm

-1
, and 

absorption in 
238
U can be ignored, find the local 

volumetric reaction rate in the uranium. 

      c) If the reactor were operated at this flux level 

for an entire year, what fraction of the atoms in 

this location would be used up if the original 

atom density of the fuel was N25 = 10
20
 atoms/cm

3
 

and the cross sections were constant?  Note that 

you must solve an ODE. 

      d) Find what would happen if the power level were 

constant for the year instead of the flux being 

constant?  Note that you must solve another ODE. 

 

1.7 In the slowing down region, the energy-dependent flux can be 

assumed to have the value (E) = 10
13
/E neutrons/cm

2
-s-eV.  

Find the total flux between 1 eV and 100 eV, and also the 

total flux between 1 keV and 100 keV. Compare the results. 

 .  
)  +  3(

1
  =  D

sa
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1.8 Prove that the maximum flux in a Maxwellian distribution 

occurs at 

                      Ê  = kT. 

 

1.9 Find the total flux in a Maxwellian distribution.  Show that 

this corresponds to the average velocity times the neutron 

density. 

 

1.10 Prove that, for a 1/v absorber, the average cross section in 

a Maxwellian distribution is lower than the value at Ê  = kT 

by the factor /4 = 0.887. 
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 CHAPTER 2 
 

 

INTERACTIONS OF NEUTRONS WITH MATTER 
 
 

 To begin with, we must point out that the probability of 

having a neutron reaction occur with a given nucleus is 

proportional to the associated reaction cross section, which is 

determined only by the nuclear properties of the nucleus with 

respect to the incident neutron.  On the other hand, the 

kinematics of the reaction are completely decided by the 

conservation laws (i.e., conservation of energy, linear and 

angular momentum, charge, and nucleons).  The actual collision 

can be considered to happen in a "black box", where we see only 

the "before" and "after" states.  In fact, the Heisenberg 

Uncertainty Principle states that we cannot observe the exact 

details of the interaction because the region is too small and 

the particles move too fast to be observed fully. 

 

 

 2.1 Compound Nucleus-Cross Sections 

 

 We now turn to the physics of the interaction of the neutron 

with the target nucleus.  One considers that the majority of 

events occur through the intermediary of formation of a compound 

nucleus that is in an excited state as a result of the addition 

of the binding energy of the extra neutron.  This compound 

nucleus then decays by one of a number of processes as shown 

symbolically below: 
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 Specifically, in order to examine the processes involved we 

must consider the energy level structure of the nucleus formed by 

the coalition of the neutron and the target nucleus.  The kinetic 

energy of the neutron is transformed into internal energy of the 

compound nucleus and adds to the neutron binding energy to equal 

the total excitation energy.  The level schemes of the target and 

compound nuclei are shown in Figure 2.1, where several things can 

happen to the excited compound nucleus: 

 

 1. A capture gamma ray (or cascade) can be emitted 

dropping the excitation level of the nucleus.  If 

enough energy is lost to go below the virtual levels to 

the bound states, the neutron is captured and the 

ground state is reached by gamma emission. 

2. The neutron (probably a different one) is re-emitted, 

with the same total kinetic energy shared between the 

particles, leaving the target nucleus in the ground 

state. A transfer of energy from one particle to the 

other usually takes place.  This process is called 

elastic scattering. 

 3. The neutron can be re-emitted with somewhat less than 

the total kinetic energy shared between the particles, 

leaving the target nucleus in an excited state that 

decays by gamma emission.  This is called n,n' 

inelastic scattering.  The total inelastic cross 

section is the sum of the cross sections for exciting 

each level, as shown in Figure 2.2 for 
238
U(n,n').  The 

scattered neutron appears at an energy of Ec
'  = Ec - Ei, 

where Ei corresponds to the ith bound level of the 

target nucleus.  Therefore, if one picks a single 

excitation energy, the resulting scattered neutrons 

will fall into rather well defined discrete ranges 

corresponding to each of the levels excited.  Use of 

this fact allows one to prepare scattering transfer 

cross sections for inelastic scattering. 
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       Fig. 2.1 Energy Level Diagram for Compound Nucleus  

Formation 

 

 

 4. A gamma ray can be emitted by the compound nucleus 

followed by re-emission of a neutron.  This is called 

n, n' inelastic scattering, and while it is much less 

important than n,n' scattering, its occurrence is not 

negligible.  It is found that more energy is lost by 

the n, n' reaction than by the n,n' reaction and 

although the former is only a few percent of the total 

inelastic scattering, it cannot always be neglected. 

 5. A different particle, such as an   particle, can be 

emitted, or fission can take place. 
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          Fig. 2.2 Inelastic Scattering Cross Sections for 238U 
 (From S. Yiftah, D. Okrent, P. A. Moldauer, Fast Reactor Cross Sections, 1960, Pergamon  
         Press, Ltd.) 

 

 

          Fig. 2.3 Lithium-6 Total Cross Section vs. Energy 
         (From BNL-325, Supl. 2, 1965) 
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 We can compare the level structures of various nuclei to 

help us understand some of the features of the observed cross-

section curves.  Some general comments are in order: 

 

    a. Light elements---the levels are widely separated in 

light elements.  For example, the first excited level 

in 
12
C occurs at approximately 4.3 MeV.  As a 

consequence, inelastic scattering is not observed at 

all except for high-energy neutrons, and we tend to 

have elastic slowing down in light moderators.  Light 

elements also tend to have broad resonances at high 

energies, as illustrated in Figure 2.3. 

 b. Heavy elements---the levels are narrowly spaced in 

heavy elements, often being only a few electron volts 

apart.  Inelastic scattering is an important scattering 

mechanism.  In fact, neutrons lose very little energy 

in elastic scattering by heavy elements, but can lose a 

considerable amount of energy by inelastic scattering. 

Resonances tend to be narrow and tightly spaced, as 

illustrated in Figure 2.4. 

c. Magic numbers---magic numbers correspond to closed 

shells of protons and neutrons, respectively, and are 

analogous to the closed electron shells in atomic 

physics that give rise to the noble gases.  Nuclei 

having closed shells are especially tightly bound, and 

therefore a large amount of binding energy is available 

upon formation.  Energy levels are widely spaced in 

such nuclei. The magic numbers are:  2, 8, 20, 28, 50, 

82, and 126.  Specific examples of such nuclei are: 
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 Fig 2.4 Uranium-238 Total Cross Section vs. Energy 
           (From BNL-325, Supl. 2, 1965)  

 

The existence of these magic nuclei is very important in nuclear 

physics and accounts for such phenomena as: 

 1. alpha particle decay---deuteron, proton, etc., decay 

are not observed, but α particles are so tightly bound 

that they can be emitted as an entity. 

 2. fission yield curves-the fission yield curves have a 

double hump shape as sketched in Figure 2.5 because the 

two fission fragments tend to form as combinations of 

magic numbers. 
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  Fig. 2.5 Schematic Fission Yield Curve 

 

 3. delayed neutron emitters---some of the elements in the 

various fission product chains emit neutrons as they 

decay towards stability.  The neutrons are invariably 

emitted as the precursor goes toward a magic number 

closed shell, using the additional binding energy to 

make neutron emission energetically possible.  The 

delayed neutrons are part of the chain reaction balance 

in a nuclear reactor and modify the time scale for 

transient response from the microsecond range to the 

second range, thus making reactor control feasible. 
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 4. shielding materials---lead-208, being doubly magic, is 

the heaviest element which is stable to   decay and is 

therefore not radioactive.  High Z materials make good 

 -ray shields.  208Pb also has a very small neutron 

absorption cross section. 

 

 

 2.2 Nuclear Systematics of Naturally Occurring Isotopes 

 

 If one examines the Periodic Chart of the Nuclides, several 

observations based on the relative occurrence of various nuclides 

in nature can be made.  Because Coulomb repulsion varies as Z
2
, 

heavy nuclides need more neutrons than light nuclides to "glue" 

them together.  Therefore, the gross behavior of the Z versus N 

curve is as shown in Figure 2.6.  Superimposed on the gross curve 

is a certain amount of fine structure.  There are rather 

significant jumps that occur at the magic numbers because of the 

associated strong nuclear binding.  In addition, there is a 

smaller systematic behavior that can be related to spin pairing 

of neutrons and protons, respectively, since each nucleon can 

have a quantum spin that is either up or down.  The pairing gives 

additional binding, and is of three types: 

 

            proton-proton 
          neutron-neutron 
          neutron-proton (occurs only at the same energy level) 
 

 Even-Even.  One finds that most naturally occurring nuclides 

are even-even.  An example is U238

92 , which fissions only with 

neutrons of E > 1 MeV because the addition of a neutron is a 

transition to the less stable even-odd state. 

 

 Even-Odd or Odd-Even.  Almost all the rest of the naturally 

occurring nuclides fall into this category, which is far less 
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numerous than above.  An example is U235

92
, which fissions with 

thermal neutrons because neutron capture is a transition to the 

more stable even-even state, and the extra binding energy becomes 

available as excitation energy.  

 

  Fig. 2.6 Diagram of Neutron Number vs. Proton Number for  

      Naturally Occurring Isotopes 
 (From The Elements of Nuclear Reactor Theory by Glasstone and Edlund, 1952, Van  Nostrand 
          Reinhold Company) 
 

 

 Odd-Odd.  There are only four odd-odd nuclides observed in 

nature.  They exist because of neutron-proton spin pairing at the 

same energy level, as shown in Figure 2.7 for B10

5 .  Since there 

are usually more neutrons than protons in nuclei, this case 

exists only for the light elements.  The observed odd-odd 

nuclides are, H2

1 , Li6

3 , B10

5 , and N14

7 .  The list stops here because 

O16

8 is doubly magic and upsets the progression. 
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        Fig. 2.7 Neutron-Proton Spin-Pairing Diagram for B10

5
 

 

 2.3 Level Widths and Partial Cross Sections 

 

 Up to this point, we have only considered the location of a 

given nuclear energy level.  In fact, the level is a small band 

whose width can be related to the lifetime of the level.  The 

mean lifetime of a level is the length of time that a nucleus in 

that state will exist before decaying to a more stable state.  

For example, the mean lifetime of the 6.67 eV level in 
238
U (which 

corresponds to the compound nucleus 
239
U
*
) is of the order of 10

-14
 

sec.  Most of the time the neutron is captured and a gamma ray is 

given off.  The decay constant for the level is the inverse of 

the mean lifetime, 

In turn, the total level width Γ is related to   by Planck's 

constant 

 .s  
l

  =  1-


  (2.1) 

 eV,   =    (2.2) 
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where   = h/2 .  We usually measure  and calculate  . 

 Since the total level width is proportional to the total 

probability of decay of the compound nucleus, it is also equal to 

the sum of the probabilities of decay into all channels, which is 

given as  

As far as the compound nucleus is concerned, the total level 

width corresponds to the cross section for formation of the 

compound nucleus, and the partial level widths correspond to the 

scattering, capture, fission, etc., cross sections.  In the 

general case, 

The cross sections given above are furthermore often given in the 

form 

where the scattering is further subdivided into elastic and 

inelastic contributions, 

and the absorption is subdivided into capture, fission, etc. 

One often sees in the literature the term non-elastic cross 

section, which is related to the above by the expression 

           

...etc.+            +               +               =         

 

(capture)              g)(scatterin 

h      widt               width            width          

fission           radiation           neutron        total

fn  

             (2.3)    

 
.  ...+             +            +              =           

fission    capture      ttering       scatotal

fcsT 
 (2.4) 

  ,  +    =  asT   (2.5) 

  ,  +    =  inelaselass   (2.6) 

 .   ...+    +    =  fca   (2.7) 

 .    -    =  elasTne   (2.8) 
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 The relationship between the total cross section and the 

cross section for formation of the compound nucleus is obtained 

by adding what is known as potential scattering (billiard ball 

effect) and interference scattering that is a cross term between 

potential scattering and compound nucleus scattering.  Hence, 

 

    2.4 Cross Section for Formation of the Compound Nucleus 

 

 We have examined the process of neutron scattering with 

regard to energy diagrams of the unexcited and compound nuclei, 

noting the presence and role of various allowed energy levels.  

Experimentally, at energies in the eV to KeV range, heavy 

nuclides exhibit rapidly varying cross sections whose peak 

magnitudes are often thousands of times greater than the values 

found in between peaks.  The cross-section curve resonances 

correspond directly to the virtual levels in the compound 

nucleus, as shown in Figure 2.8.  For a single isolated resonance 

at energy Er, the wave-mechanical solution can be put into a form 

called the Breit-Wigner single level formula: 

where A is essentially constant. 

 This is the cross section for formation of the compound 

nucleus.  The probability of obtaining any given mode of de-

excitation is proportional to the ratio of the partial level 

width to the total level width.  Thus, for scattering from the 

compound nucleus, 

 .    +    +    =  ceinterferenpCNT   (2.9) 

 ,
/4  + )E  -  E(

A
  =  )E(

22

rc

cCN


  (2.10) 

 , )E(  =  )E( n
cCNcsCN




  (2.11) 
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while for radiative capture, 

 

 Fig. 2.8 Cross Section vs. Energy Relative to the Levels of 

              the Compound Nucleus 

 

 

 2.5 Reaction Probabilities 

 

 We have examined the nature of the microscopic cross 

sections of various materials as a function of energy.  We now 

turn to the probability that an interaction will occur as a 

neutron passes through matter.  Specifically, we observe that the 

macroscopic total cross section at any energy, denoted as  T(E), 

is really the probability of having  any kind of interaction take 

place per centimeter of the material through which the neutron 

passes.  Hence, the average number of interactions that a single 

neutron will have in passing through a distance dx is 

 etc. , )E(  =  )E( cCNcc



  (2.12) 

 

    

dx....]  +    +    +  [  =  dx   =  dx  in ninteractio ofy Probabilit sfcT   (2.13) 
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 If it were possible to consider each neutron to be an 

intensity rather than a single particle, then we could lose a 

fractional part of that intensity rather than the whole neutron 

in an interaction (this is the equivalent of considering a beam 

of neutrons where there are so many that we can talk about 

statistical averages).  The fractional attenuation of neutrons in 

a given distance dx is therefore 

where the minus sign indicates that the intensity decreases with 

each interaction.  This is a first-order homogeneous differential 

equation that can be solved for the probability that a single 

neutron will survive the traversal of a distance x without 

interaction.  If no represents the initial intensity, then the 

equation can be solved using an integrating factor to obtain the 

expression 

The corresponding survival probability is 

 

Again, this probability applies to a single neutron.  Note that 

it is not the sum of the partial probabilities for absorption, 

fission, scattering, etc.  Also note that this equation says 

nothing about what happens to a neutron that is scattered; we are 

only counting first-collision events. 

 As an example, consider the probability that a thermal 

(0.025 eV) neutron will traverse a thickness of 1 cm of water 

without interaction.  Since  T = 3.3 cm
-1
, we have p(lcm) = e

-3.3
 = 

0.037. Only about 4% of the neutrons will pass through a distance 

of 1 cm without interaction.  On the other hand, since scattering 

 dx, -  =  
n

dn
T  (2.14) 

 .en  =  n(x) x -
o

T  (2.15) 

 .e  =  
n

n
  =  p x -

o

x
T  (2.16) 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

33 

  

is the predominant mode of interaction, most of the neutrons will 

survive to have multiple-scattering collisions and therefore will 

penetrate a considerably greater distance before being lost.  

However, since each scattering event involves an energy transfer, 

the neutrons that survive will be at a different energy than when 

they started.  This is the process of neutron moderation, and the 

above considerations imply that moderation is a function of both 

space and energy. 

 Let p(x) dx  be the probability that the neutron will 

penetrate a distance x and then have an interaction in the 

interval dx, i.e., between x and x + dx.  This factor is given as 

the product of the individual probabilities that a neutron will 

survive in passing through x and then have its next interaction 

in dx, namely, 

If the medium were of infinite extent, the total probability of 

interaction would be unity, since 

This is to say that the neutron would interact somewhere with 

absolute certainty.  The probability p(x) is useful as a 

weighting function.  For example, the average distance that a 

neutron would move before it has an interaction, which is called 

the mean free path  T, is given by the expression 

This result can be obtained by integrating Eq. (2.19) by parts. 

 

 2.6 Kinematics in the Center-of-Mass System 

 

 It is possible to treat the neutron scattering or absorption 

 dx.   e  =  dx p(x) T
x - T   (2.17) 

 1.0.  =  |e-  =  dx p(x)
O

x -

O
T


  (2.18) 

 .
l

  =  
dx p(x) 

dx xp(x) 
  =  x  =  

TO

O
T








  (2.19) 
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event directly in the Laboratory System (LAB) such that the 

process corresponds directly with an experiment.  This 

configuration is shown in Figure 2.9.  Unfortunately, the target 

nucleus considers itself to be at the "center of the universe" at 

the moment that the incident neutron has coalesced with it, and 

the resulting probabilities or cross sections for re-emission of 

the neutron (or other product) are generally symmetric (even 

isotropic) about this center point.  Hence, it is most convenient 

to view the collision in the Center-of-Mass System (CM), which 

gives the simplest form for the reaction probability.  We then 

translate back to the LAB system to observe the results. 

 

 Fig. 2.9  Neutron Scattering in the LAB System 

 

 The center of mass of a system lies along the straight line 

that joins the two particles and moves with respect to a fixed 

observer in the laboratory as the particles move.  In general, 

the velocity diagrams are vectors, but in the special (and 

important) case where the target nucleus is initially at rest, 

all velocities are collinear.  Consider that the neutron has mass 

m and velocity v before the collision, and the nucleus has mass M 

and is at rest.  With the origin of the coordinate system placed 

at the site of target nucleus, we have the diagram shown in 

Figure 2.10.  The neutron instantaneously lies at a distance x 
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from the nucleus while the center of mass lies at xo. 

 Since the center of mass is located at the balance point of 

the system, we write 

or 

where A = M/m is the atomic weight of the target nucleus.  The 

velocity of the center of mass is obtained by differentiating the 

position variable with respect to time, i.e., 

Hence, 

 

 Fig. 2.10 Neutron-nucleus Location With Respect to the  

Center of Mass 

 

 

 If we imagine ourselves at the center of mass, we see both 

particles approach from opposite directions.  The neutron has a 

relative velocity vc given by 

 mx,  =  x M)+ (m o  
 

 ,
A + 1

x
  =  

 M+ m

mx
  =  xo  (2.20) 

 .
dt

dx
 

A + 1

1
  =  

dt

dx
  =  V

o
CM  (2.21) 

 v.
A + 1

1
  =  V CM  (2.22) 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

36 

  

while the nucleus approaches from the opposite direction with a 

relative velocity Vc given by 

The total momentum in the CM system is found by direct 

substitution of the above values, giving 

 

Hence, the CM System is a zero momentum system.   The net 

momentum before the interaction is zero and it must remain so 

afterwards.  An important consequence of this result is, that in 

an elastic collision in the CM system, the particles leave back-

to-back with the same velocities that they had before the 

collision.  The two versions of the same collision are shown in 

Figure 2.11.  Conceptually, the collision is much simpler in the 

CM system because there is only one angle involved and the 

velocities are unchanged by the collision. 

 Now, consider the total energy in the two systems.  For 

elastic scattering, the energy of the incident neutron in the LAB 

system is exactly equal to the total energy and is given as 

 

                      .mv
2

1
  =  E 2

                         (2.26) 

 v,
1 + A

A
  =  V - v  =  v CMc  (2.23) 

 v.
A + 1

1
 -  =  V - 0  =  V CMc  (2.24) 

 0.  =  MV + mv cc  (2.25) 
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 Fig. 2.11 Comparison of a Scattering Collision in the LAB   

               and CM Systems 

 

In the CM system the total energy is the sum of the energies of 

the two particles as seen by an observer located at the center of 

mass.  This value is 

The quantity in brackets is called the "reduced mass," denoted by 

the symbol  m, and is given in general by the equation 

Note that, comparing E with Ec, Ec is smaller, i.e., 

 

.v
  M+  m

mM

2

1
  =  v)

1  +  A

A
m(

2

1
  = 

)MV  +  mv(
2

1
  =  E

22

2
c

2
cc









 (2.27) 

 .
1  +  A

mA
  =  

  M+  m

mM
  =  

m  (2.28) 

 E.
1  +  A

A
  =  Ec  (2.29) 
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The difference in energy is not lost, it is simply the energy of 

motion of the center of mass itself.  On the other hand, as far 

as a nuclear reaction is concerned, the energy of motion of the 

center of mass, given by the expression 

is unavailable to excite the nucleus.  This means that for 

endothermic reactions (negative Q value) the reaction threshold 

is greater than Q by the factor (A + 1)/A.  Note that the sum of 

Ec and ECM is equal to Q as it should be for conservation of 

energy to hold.  The proof that the velocities in the CM system 

remain unchanged after an elastic collision is straightforward 

and is left as an exercise. 

 We now relate the scattering collision in the two systems by 

using a vector diagram that combines the two previous scattering 

diagrams.  After the collision we have the situation where the 

final velocity in the LAB system is obtained by adding the 

velocity of the center of mass to the final velocity in the CM 

system (Figure 2.12).  We note that in the perpendicular 

direction, 

while in the parallel direction 

 

 

The ratio of these quantities is 
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    Fig. 2.12 Scattered Neutron Velocities in the CM and LAB     

              Systems 

 

Thus, we have one useful relationship between   and  .  By 

applying the law of cosines, 

But,     

Hence, the laboratory velocity is related to the CM velocity by 

the expression 

Recall that for elastic scattering 

Introducing this value into Eq. (2.34), and simplifying, we 

obtain the useful result 

Since the energy of a particle is proportional to the square of 

 ).  -  180( Vv2  -  V  +  v  =  v CMc
2
CM
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its velocity, the ratio of the energy of the scattered neutron to 

the energy of the incident neutron in the LAB system, expressed 

in terms of the CM angle  , is 

 Note that for   = 0, i.e., a glancing collision, E'max = E 

and there is no energy exchange.  On the other hand, for a head-

on collision where   = 180, 

Hence, for a collision which gives the maximum energy exchange in 

an elastic collision, 

 

 

    2.7 Relationships Between the Scattering Angles in the LAB 

and CM Systems 

 

 We can also find a relationship between the angle   in the 

LAB system and the angle Θ in the CM system.  We start with the 

vector diagram result given by Eq. (2.32),  

and substitute the values for VCM and 'v c  in terms of v (for 

elastic scattering) to obtain 

 .
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        Fig. 2.13 Differential Solid Angle Diagram 

 

 This expression, relating the LAB angle of scattering to the 

CM angle of scattering, can be used to relate the cross sections 

in the two systems.  Recall that the unit vector 

 gives the 

direction of travel of the neutrons.  Associated with 

 is a 

differential surface element d  through which these neutrons 

pass.  This is shown in detail in Figure 2.13.  The quantity d  

is an element of surface area on the unit sphere given by the 

expression 

 Referring back to Figure 2.9, one must remark that for most 

materials there is no polarization and the scattering is only 

dependent upon the polar angle   and not on the azimuthal angle 

  (that is, we have rotational symmetry about the azimuth).  The 

same holds true in the CM system.  We relate the cross sections 

as a function of angle by writing that the probability that a 

neutron crosses the corresponding surface area in the two cases 

 .d d   =  d sin  (2.41) 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

42 

  

is equal, i.e., 

But because of azimuthal symmetry, the cross sections are only 

functions of the polar angle, giving 

The differential solid angles in the two systems are 

Moreover, the rotational angles   and   must be equivalent to 

conserve momentum.  Hence, by substitution, 

 

We note that 

Therefore, the desired relationship is 

The factor d(cos )/d(cos ) is called the Jacobian of the 

transformation of the cross section from the CM system to the LAB 

system. 

 Using the previously obtained expression relating the 

cosines in the two systems, plus Eq. (2.40), and performing the 

derivatives, we obtain the useful equation 

 .d ),(  =  d ),( CMss    (2.42) 
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Thus, if we know  s( ), which is a constant for isotropic 

scattering in the CM system, we can easily compute  s( ).  For 

isotropic scattering in the CM system, 

where  s is the total scattering across section given by the 

relationship 

We must pick an angle   in the laboratory system, compute the 

corresponding   using the cosine relation given by Eq. (2.40), 

compute the Jacobian for this  , and then multiply it by  s( ) 

to obtain the value of  s( ).  The process must be repeated for 

each value of  . 

 Next, let us consider in somewhat more detail what happens 

to the neutrons that scatter.  Scattering is usually isotropic in 

the CM system but anisotropic in the LAB system.  Anisotropic 

scattering implies a net migration of the neutron in the original 

direction of travel after multiple collisions. 

 A measure of the amount of anisotropy is the average cosine 

of the scattering angle, defined as   = cos .  The average 

cosine of the scattering angle is computed by weighting the 

quantity cos  by the probability of scattering through angle  , 

which is given by the angular cross section  s( ).  Hence, 

For azimuthal symmetry, the differential solid angle of a ring is 

 . 
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Also, the integral of  s( ) over all   is simply  s.  Thus the 

expression reduces to 

 We already have relationships between the angles   and  , 

which for elastic scattering are simply 

We also have a relationship between the cross sections  s( ) and 

 s( ).  Furthermore, for isotropic scattering in the CM system, 

 s( ) =  s/2.  We can therefore insert the above information 

into the expression for   and perform the integrals to obtain a 

result that is good for elastic scattering that is isotropic in 

the CM system, namely, 

For heavy nuclei, A is large and   is small.  The average 

scattering angle is near 90, which states that scattering is 

approximately isotropic in the LAB system as well as in the CM 

system. 

 For hydrogen,   = 2/3, which corresponds to an average 

scattering angle of 48.  This means that the scattering is 

primarily forward directed in the LAB system.  In fact, letting  

A = 1, the tangent relationship gives 
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Hence,   =  /2.  Since  max = 180,  max = 90 and there is no 

backscattering at all in the LAB system! 

 Using the cross-section relationship, the corresponding 

angular cross section in the LAB system is 

Using the half-angle relationship, we obtain 

This cross section is strongly peaked forward.  In fact, the 

distribution is a uniform sphere tangent to the point of 

interaction, as shown in Figure 2.14. 

 

 Fig. 2.14 Angular Differential Scattering Cross Section of  

               Hydrogen in the LAB System 

 

 Recall that  T = 1/ T.  We can also define a mean free path 

for scattering as  s = 1/ s, where  s is the average distance 
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between elastic scattering collisions.  But since we do not lose 

the neutron, we should really increase or reduce the average path 

length to account for the fact that there may be predominant 

forward or backward scattering in the LAB system.  We call this 

corrected quantity the transport mean free path and define it as 

Note that   lies between 0 and 1 for isotropic scattering in the 

CM system so that  tr >  s.  On the other hand, if the scattering 

cross section in the CM system is anisotropic, so that it peaks 

in the backward direction, then   is negative and  tr <  s. 

 We can now define a transport cross section that includes 

both absorption and corrected scattering.  It is given by the 

expression 

This expression will be encountered again in Chapter 4 when we 

deal with neutron transport. 

 

 

    Problems 

 

2.1 Prove that the initial velocities of both the neutron and 

the target particle remain unchanged in the CM system after 

an elastic scattering collision through an angle  . 

 

2.2 For an elastic scattering collision, show that the ratio 

'v/V  =  cCM  which appears in Eq. (2.33), has the value  

     γelas = 1/A.  

 

2.3 Suppose that for some reason all red protons had a mass of 

1/2 instead of the normal value of 1 observed for ordinary 

 .
  -  1

  =  s
tr




  (2.50) 
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blue protons.  We know that the neutron scattering cross 

section is isotropic in the CM system. 

       a) What are the maximum and minimum energies in the 

laboratory system of neutrons of energy Eo 

scattered by an initially stationary red proton?  

Derive your answer from basic principles. 

         b) Is the scattering in the laboratory system 

isotropic, forward, or backward?  Give physical 

reasoning for your answer. 

         c) The text gives the formula   = 2/(3A) for the 

average cosine of the scattering angle, which says 

  = 4/3 when A is equal to 1/2; this is obviously 

wrong because the cosine varies between ± 1.  

Explain what is going on, and make a reasonable 

estimate of the proper value of  . 

 

2.4 The differential elastic neutron cross section in the CM 

system for a material of mass number A = 2 is given by the 

expression 

         a) What is the value of the total elastic scattering 

cross section  s? 

         b) Plot the differential elastic scattering cross 

section in both the CM system and the LAB system 

versus the corresponding scattering angles   and 

  on both linear graph paper and polar graph 

paper. 

         c) What fraction of the neutrons are backscattered in 

the CM system and in the LAB system? 

         d) Compute the average cosine of the scattering angle 

 . 
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2.5* For elastic scattering, the relationship between the 

laboratory neutron energies before and after collision is 

given by the expression 

 Derive the corresponding relationship for inelastic 

scattering to the first excited level at energy E1 above the 

ground state of a target nucleus of mass M. 

 

2.6* Using the nuclear data sheets or the chart of the nuclides 

to obtain mass values, compute the binding energy of the 

last neutron for the following light isotopes using the 

formula 

      where 1 AMU  931 MeV. 
 

 

 Comment on any systematic behavior or unusually large or 

small values that you observe. 

 

2.7* You are given the general nuclear reaction a(b,c)d, where 

the corresponding masses are Ma, Mb, Mc, and Md, and Ma + Mb  

Mc + Md. 

         a) Show that the quantity   is given by the 

expression 
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   where Ec represents the kinetic energy brought 

into the CM system by the particle b and Q is the 

Q-value of the reaction. 

         b) Find an expression for the laboratory energy of 

particle c in terms of the laboratory energy of 

particle b and the scattering angle relationship  

2.8 For elastic scattering that is isotropic in the CM system, 

prove that 
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 CHAPTER 3 
 

NUCLEAR FISSION 
 
 

 In this chapter we examine the energetics of the fission 

process in terms of the binding energy of a nucleus.  We will see 

that the reason that some nuclides fission with thermal neutrons 

while others fission only with fast neutrons is related to the 

spin-pairing effect between similar nucleons.  For heavy 

nuclides, such as uranium, the nucleus is held together against 

the disruptive Coulomb forces between protons by short-range 

strong nuclear forces provided by both protons and neutrons.  

When fission takes place, the lower Z products find themselves 

with a surplus of neutrons, which leads to prompt neutron 

emission during fission and a subsequent series of  - 
decays of 

the fission fragments.  These excess fast neutrons form the basis 

for a chain reaction, while the instability of the fission 

fragments to  - 
decay leads to a large inventory of radioactive 

species in a power reactor and forms the basis for problems of 

decay heat removal, reactor safety and waste handling and 

disposal. 

 We shall also see that the magic numbers, which pertain to 

closed shells of neutrons or protons, play the major role in 

determining the shapes of the fission product yield curves for 

various fissionable isotopes.  Magic numbers are involved in 

delayed neutron emission, which, in turn, is the basis for 

allowing a nuclear reactor to be controlled on a time scale of 

seconds with mechanically driven control rods.  They are also 

responsible for the high yield and large cross section of 
135
Xe, 

which leads to the xenon poisoning and xenon-induced power 

oscillation problems in thermal power reactors. 
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 3.1 Binding Energy 

  

 If one sketches the curve of binding energy per nucleon 

versus mass number, one obtains a curve that increases initially 

from zero, peaks at about 8 MeV/nucleon near mass number 60, and 

then slowly decreases as the mass number increases further.  

Superimposed upon the general curve is a certain amount of fine 

structure, as shown in Figure 3.1.  Note that the binding energy 

per nucleon is higher for elements with mass numbers near 60 than 

for elements of high mass number such as 
235
U or 

238
U.  Therefore, 

there exists a configuration at medium mass numbers that is more 

stable than the one that occurs at high mass numbers: and one 

might expect that heavy nuclei would undergo spontaneous fission 

into smaller pieces in an attempt to reach the more stable state. 

In most cases this does not happen; energy must usually be 

supplied to start the reaction. 

 

 

    Fig. 3.1 Binding Energy per Nucleon versus Mass Number  

         (From R. D. Evans, The Atomic Nucleus, 1955, McGraw Hill) 
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 The semi-empirical binding energy equation explains Figure 

3.1 in the following manner.  The primary force that holds the 

nucleus together is due to short-range nucleon-nucleon attraction 

that is essentially proportional to the total number of nucleons 

present; this is, in turn, proportional to the nuclear volume.  

We must subtract something from the nuclear forces to account for 

the fact that some nucleons are near the nuclear surface and do 

not have neighbors on all sides.  Hence, the binding energy curve 

increases with mass number at small mass numbers.  The primary 

force trying to disrupt the nucleus is Coulomb repulsion, which 

is proportional to Z
2
, the square of the number of protons 

present in the nucleus.  This term tends to be largest at high 

mass numbers.  Furthermore, we must subtract something for 

asymmetry, i.e., having either too many protons or neutrons in 

the nucleus.  These extra particles must lie at higher quantum 

states and are therefore less tightly bound, as shown in Figure 

3.2.  Because of spin pairing, we must add or subtract a term; we 

subtract when the nucleus is odd-odd (i.e., an odd number of both 

and protons) and add when it is even-even.  This contribution is 

represented by the saw-tooth structure superimposed on the 

binding energy curve.  Finally, we have the effects of closed 

shells of nucleons, which we shall call magic.  To summarize, the 

contributions symbolically are the following: 
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We can easily see from this expression why the binding energy per 

nucleon decreases above A = 60.  As Z increases, the Coulomb 

repulsion term increases rapidly, requiring considerably more 
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neutrons to hold the nucleus together.  On the other hand, these 

extra neutrons lend a certain asymmetry to the binding that 

prevents one from adding neutrons ad infinitum.  The 

contributions of the various terms are shown in Figure 3.3. 

 

 Fig. 3.2 Binding in Asymmetric Nuclei 

 

 

 Fig. 3.3 Binding Energy Contributions 

         (From R. D. Evans, The Atomic Nucleus, 1955, McGraw Hill)  
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 3.2 Liquid Drop Model of Fission 

 

 The easiest way to visualize fission is in terms of the so-

called liquid drop model.  Consider that, when a nucleus is 

perturbed, it vibrates in a longitudinal fashion just like a 

droplet of liquid that is held together by surface tension 

forces.  The process is shown schematically in Figure 3.4.  If 

the excitation is sufficient to cause the nucleus to neck down at 

some point, there is a good chance that it will break into two 

pieces. 

 

    Fig. 3.4 Vibration of a Perturbed Nucleus 

 

 As a matter of fact, the two lobes formed during vibration 

are not of equal size, because each lobe tries to attain the most 

stable configuration possible, and these configurations 

correspond to the magic numbers.  The actual picture is closer to 

that shown in Figure 3.5.  One lobe is doubly magic at (50;82) 

and the other is doubly magic at (28;50).  The neck contains 

approximately 25 nucleons making up the balance of the total 

number of particles in the nucleus.  The actual point of the 

break is not fixed, but is statistically distributed over the 

neck.  However, there is reason to believe that it is more likely 

that the neck will break in the middle than at the ends where it 
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is somewhat wider. 

 What causes the break to occur at all?  Basically, the break 

is due to the Coulomb repulsion.  When the nucleus is spherical, 

the short-range nuclear forces can hold it together, but when it 

is distorted, the short-range forces are diluted by the 

additional surface area, and Coulomb repulsion predominates.  The 

Coulomb repulsion can be calculated classically; for example, for 

the two just-touching spheres shown in Figure 3.6, it is given by 

the expression 

where (Z1;A1) and (Z2;A2) are the atomic numbers and weights of 

the two fragments and (Z = Z1 + Z2; A = A1 + A2) is the 

designation of the compound nucleus. 

 

 

    Fig. 3.5 Nucleus at the Moment of Fission 

 

 Eq is the minimum energy that must be attained if the break 

is to occur and the two fragments are to separate.  The available 

energy is equal to the Q value of the reaction plus the energy 

supplied to the system externally.  The Q value is, of course, 

equal to the difference in rest mass equivalent energies between 

the initial and final ground states of the constituents, i.e., 

 ,
)R + R(

eZZ
  =  E

21

2
21

q  (3.1) 
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Fission will occur whenever 

 

 Fig. 3.6 Two Touching Fission Fragments 

 

 The point of interest is that the binding energy of the last 

neutron, the one captured to form the compound nucleus, is a 

significant contributor to the needed value.  In some cases, the 

binding energy of the last neutron can supply enough energy so 

that fission will occur with thermal neutrons having essentially 

zero kinetic energies. 

 We have already written an expression for the Coulomb 

energy, Eq, which corresponds to the amount of energy required to 

bring the two spheres from infinity to the point where they just 

touch.  If the spheres were pushed together a bit more, they 

would in fact begin to merge and the forces of nuclear attraction 

would then pull them together into a single nucleus.  This 

process, when plotted on a potential energy diagram, is as shown 

in Figure 3.7.  Fission is the exact opposite process.  We must 

 .c)]M + M( - M[ = Q 2
A2A1A  (3.2) 

 .E  >  Q + E  =  E qsuppliedavailable  (3.3) 
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now supply some energy to stretch the nucleus out of its 

spherical shape, and if we do not supply enough energy, it will 

spring back.  But if we manage to supply Ecrit or more, fission 

will occur.  Upon fission, we will get back the energy Q plus the 

energy supplied, Esupplied. 

 

 

 Fig. 3.7 Potential Energy Diagram for Two Fission Fragments 

 

 Where can this excess excitation energy be obtained?  There 

are at least four processes that are commonly observed: 

 

1. The nucleus captures an energetic   ray.  Capture   rays 

have energies of 4-8 MeV.  If this is greater than Ecrit, the 

result is called photofission. 

2. Capture of a slow neutron.  The binding energy B of the last 

neutron is available as excitation of the compound nucleus. 

This is sometimes sufficient to cause fission, which is the 

case when 
235
U captures a neutron and the compound nucleus 

236
U
*
 fissions.  If the nucleus de-excites by gamma emission, 

fission does not occur. 

3. Capture of an energetic neutron.  The kinetic energy Ec, 
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when added to B, can be sufficient to cause fission.  This 

is a threshold reaction and is exemplified by 
238
U and 

232
Th 

which fission upon capture of a neutron having an energy 

greater than about 1.3 MeV.  Of course, the nuclide that 

fissions is 
239
U
*
 or 

233
Th

*
. 

4. Spontaneous fission.  If the value of Ecrit is relatively 

small, there is a fairly good chance that a random fragment 

can "tunnel" through the potential barrier as shown in 

Figure 3.8.  This is a quantum-mechanical effect, which is 

well known in α-particle emission.  The higher the barrier, 

the longer the half life for fission.  An example is 
252
Cf, 

which has a half life of 2.64 years.  
238
U also fissions 

spontaneously but with an effective half life of 10
16
 years! 

 

 Fig. 3.8 Potential Energy Diagram for Spontaneous Fission 

 

 The critical energies for fission of various nuclides are 

given in Table 3.1; for those nuclei that are usually formed by 

neutron capture, the binding energy of the last neutron is also 

given.  One notes that the critical energies are only small for 

the very heavy nuclides, which may be traced to the increasing 

Coulomb repulsion effect.  One also notes that the spin-pairing 

effect is very important, since those nuclei that start out odd-
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even and become even-even by neutron capture gain a pairing 

energy of 1-2 MeV, which is usually enough to make fission with 

thermal neutrons possible.  The fissile nuclei such as 
235
U, 

233
U, 

and 
239
Pu fall into this class. 

 

                                 Table 3.1 

                 Critical Energies of Fissionable Nuclides 

_____________________________________________________________________________ 

  Parent      Fissioning        Critical       Binding Energy B      Ecrit-B 

  Nuclide      Nuclide        Energy (Mev)    of Last Neutron (Mev)   (MeV) 

_____________________________________________________________________________ 

     -         
 208

Pb             20.                -                 - 

     -      
           232

Th        5.9               -                 - 

   
232
Th 

  233
Th

*
            6.5              5.1               1.4 

     -         
 233

U      5.5               -                 - 

   
233
U     

           234
U
*
            4.6              6.6            negative 

     -          
 235

U             5.75              -                 - 

   
235
U         

 236
U
*
            5.3              6.4            negative 

     -          
 238

U             5.85              -                 - 

   
238
U         

 239
U
*
            5.5              4.9               0.6 

     -          
 239

Pu            5.5               -                 - 

   
239
Pu        

 240
Pu

*
           4.0              6.4            negative 

_____________________________________________________________________________  

 (Adapted from J. R. Lamarsh, Nuclear Reactor Theory, 1966, Addison-Wesley) 

 

  On the other hand, those nuclei that are even-even to 

start with and become even-odd by neutron capture lose the 

pairing energy. One must therefore supply kinetic energy to make 

these nuclides fission.  Examples are 
232
Th and 

238
U, which have 

thresholds at about 1 MeV.  These nuclides are considered to be 

fertile, however, because the decay chain eventually leads to a 

fissile element, e.g., 
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and 

The fission cross sections for several even-even nuclides are 

given in Figure 3.9 where the threshold nature is obvious. 

 

  Fig. 3.9 Threshold Cross Sections 

   (From S. Yiftah, J. Okrent, and P. Moldauer, Fast Reactor Cross Sections, 1960, Pergamon) 

 

 For the even-odd fissile nuclides, the fission cross 

sections for thermal neutrons are rather high, as is 

illustrated in Table 3.2. A measure of the efficiency of a 

fissile element is its spectrum-averaged capture-to-fission 

cross-section ratio, given as  

This quantity represents the relative number of neutrons that 

 Pu 

d 2.3
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m 23
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are captured, and hence lead to the nonproductive loss of a fuel 

atom, compared to those that lead to fission.  When a nucleus 

fissions, the products are neutron rich and some of the excess 

neutrons are released immediately.  We state that   neutrons 

are "boiled off" in the fission process.  Hence, the net number 

of neutrons produced in the fuel per neutron captured, which is 

a figure of merit for the fuel, is given by 

 

 Table 3.2 

 Microscopic Thermal Neutron Fission Cross Sections in Barns 

_____________________________________________________________________________ 

Nuclide       Absorption          Fission        Capture           

_____________________________________________________________________________ 

233
U              579               531             48          2.49 

235
U              681               582             99          2.42 

239
Pu            1011               743            268          2.87 

_____________________________________________________________________________ 

 

There is a corresponding definition for natural or enriched 

uranium that involves macroscopic cross sections.  We would 

like   to be as large as possible.  In fact,   can be 

classified as follows: 

 

       > 1         for a chain reaction to be feasible; 

     2 >   > 1     for the possibility of converting fertile 

                    atoms to fissile, which is the case for thermal 

                    reactors fueled with 
235
U; 

       > 2         for the possibility of breeding as much fuel as 

                    is consumed, which is the case for fast  

                    reactors fueled with 
239
Pu. 

 .
 + 1

  =         
a

f








   (3.5) 
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  3.3  Fission Product Yields 

 

 We have shown that the process of fission is asymmetric 

because each lobe tends to be doubly magic in the perturbed 

nucleus.  Actually, many different modes of fission are 

possible, because the products formed are dependent upon where 

the "neck" between the two lobes breaks.  The total energy 

released is therefore an average over all possible modes.  The 

average yield of each product depends upon the probability 

distribution for breakage along the neck; breakage is most 

probable in the center of the neck and varies as a function of 

neutron energy, as shown schematically in Figure 3.10.   

 With these generalities in mind, we can examine the 

experimentally obtained fission product yield curves.  The 

yield curves have been obtained by using very quick and 

efficient radiochemical procedures to separate and identify a 

number of specific isotopes in the various mass chains.  Sample 

yield curves are shown in Figure 3.11.  The maximum yields are 

about 7%, with considerable variation in magnitude as the mass 

number varies.  The yield curves for heavier fissionable 

elements are somewhat different, being slightly shifted to the 

right because there are more particles in the "neck".  The fact 

that the delayed neutron emitters are fission products means 

that the yields of delayed neutrons will be different for 

different fissionable nuclides simply because the fission 

product yield curves are different.  The mass chain A = 135, 

which leads to the fission product 
135
Xe ( Xe  3 x 10

6
 barns!), 

has a yield of the order of 6%.  Hence xenon poisoning in 

thermal reactors operating at moderate power levels is a 

definite reactor operation problem that would not exist if the 

yields were lower. 
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 Fig. 3.10  Schematic Breakage Probability vs. Position in 

           the "Neck" 

 

 

    Fig. 3.11  Fission Product Yield Curves for 
235
U 
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 3.4  Fission Neutron Spectrum 

 

  The prompt fission spectrum for a number of fissionable 

isotopes has been measured by proton-recoil techniques using 

both hydrogen-filled proportional counters and photographic 

emulsions.  In the former, a voltage pulse is measured for each 

neutron detected, while in the latter the track length of the 

scattered proton is measured in the developed film.  In either 

case, what is measured is the proton energy spectrum from which 

the incident neutron spectrum must be derived by some sort of 

unfolding procedure.  Fortunately, the response function for a 

mono-energetic neutron source at energy En is essentially a 

rectangular distribution of proton energies from the neutron 

energy En down to zero, as shown in Figure 3.12. If the protons 

are only observed at a fixed angle to the neutron source, there 

is a direct proportionality between the proton and the neutron 

spectra.  However, if all angles are measured, as in emulsions, 

then the neutron spectrum is essentially proportional to the 

derivative of the proton spectrum. 

  The experimental results, when plotted versus neutron 

energy, can be fit by a variety of functions.  The basic nature 

of the curve is shown in Figure 3.13. We shall use the symbol 

 (E) to denote the normalized fission neutron spectrum such 

that 

For 
235
U fission, the following formulae are often used 

 1.  =  dE (E)
E all
  (3.6) 

 ;E e 0.770  =  (E)   Maxwellian -0.776E     (3.7) 

 ;2.29E e 0.453  =  (E)   Frye-Cranberg -1.036E sinh  (3.8) 
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. available 

data best of tabulation numerical  =  (E)   Harris 
        (3.9) 

 

From the reactor designer's standpoint, the numerical tabulation  

is probably the most appropriate choice, although the analytical 

forms have some advantages when doing theoretical computations. 

 

    Fig. 3.12  Energy Distribution of Scattered Protons for a 

                 Monoenergetic Neutron Source 

 

 

  Fig. 3.13  Fission Neutron Spectrum 
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  3.5 Prompt Neutrons 

 

  The neutrons that are emitted in the fission process all 

contribute to the maintenance of the steady-state chain 

reaction, whether they are emitted immediately (i.e., within  

10
-17
 s of the fission event) or are emitted in the decay of some 

of the fission fragments or their daughters (which delays the 

emission to the time range of seconds after the fission event). 

The number of prompt neutrons that are "boiled off" of the 

nucleus that is undergoing fission is a purely statistical 

quantity that can vary from a minimum of zero up to as many as 6 

or 7.  The distribution has been measured and has the general 

shape plotted in Figure 3.14. When we have a large number of 

neutrons in a reactor we can use the mean value of   = 2.42 to 

characterize the behavior of the system.  On the other hand, 

when we consider the source-less startup of a "new" reactor, the 

statistical nature of the neutron yield comes into play, as has 

been observed in the Godiva bare core assembly experiments.  

There we encounter the spread or variance of the distribution as 

well as the mean or average behavior. 

 

  Fig. 3.14 Probability Distribution of Fission Neutron     

                Yields 
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  A Godiva experiment consisted of the assembly of two small 

235
U hemispheres (see Figure 3.15) such that the assembly became 

supercritical.  After a very short period of time, the 

hemispheres were separated to terminate the excursion.  The 

experiment was repeated 89 times.  In each case, the same excess 

reactivity effect was introduced but the flux level vs. time 

history was different depending upon how many neutrons were 

emitted in the initial few fission events.  The results are 

sketched in Figure 3.16. 

 

Fig. 3.15 Godiva Hemispheres 

 

 

    Fig. 3.16 Results of the Godiva Excursion Experiments 
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 These experiments have been successfully analyzed using a 

probability generating function technique in the balance 

equations.  The mean or first moment of the distribution 

corresponds to the average behavior when the neutron population 

is very large (deterministic), while the second moment predicts 

the spread or variance of the distribution.  Ordinarily there 

are so many neutrons present in a reactor that we need worry 

only about the average behavior and need not consider 

statistical fluctuations. 

  Because the amount of excitation of a fissioning nucleus 

is a function of the binding energy plus the kinetic energy of 

the last neutron, one would expect to see some variation in the 

neutron yield with neutron energy.  As a matter of fact, this 

effect is observed.  An approximate formula for   (dropping the 

average bar) as a function of energy is 

where  0  is the value at thermal energy or at the threshold 

energy and a is a small positive constant value which is 

different for different nuclides. 

 

 

 3.6  Delayed Neutrons 

 

 The delayed neutrons are neutrons that are emitted by 

certain members of various fission product chains when the 

available binding energy makes neutron emission a competitive 

process with  - 
decay.  To examine this process more fully, we 

first examine the nature of the driving force in the fission 

product decay chains.  Specifically, the fission products that 

are emitted are neutron rich, and the asymmetry effect in the 

semi-empirical binding energy equation drives the decay to a 

point of stability for the given mass number by effectively 

 aE +   =  (E) o , (3.10) 
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converting neutrons to protons (  - 
decay).  The 135-mass chain 

is shown below as an example: 

Four successive  - 
decays are needed to attain stability, and in 

general the half-life increases as stability is approached, 

which implies that the driving energy is a decreasing function 

as Z increases.  As a matter of fact, by taking the derivative 

of the semi-empirical binding energy equation with respect to Z 

for constant A, one obtains a parabola for mass numbers that are 

odd (see Figure 3.17).  One sees that isotopes on the left-hand 

side of the figure will undergo  - 
decay to reach stability, 

while those on the right-hand side will undergo  +
 decay or 

electron capture.  Fission products are always on the left-hand 

side.  The situation is similar for even A, but there is a 

double parabola, as shown in Figure 3.18. 

 The emission of delayed neutrons is invariably related to 

the magic numbers, as illustrated by the A=87 decay scheme shown 

in Figure 3.19.  The isotope 
87
Kr has 51 neutrons, one more than 

needed for a closed shell.  If the isotope is formed at an 

excited level above the ground state of 
86
Kr, this excess 

neutron will be emitted in competition with the emission of a   

ray to the ground state of 
87
Kr.  The isotope 

86
Kr is even-even 

and also has a magic neutron number.  This extra binding energy 

is the source of the energy favoring neutron emission.  Note 

that the emitted neutron has a discrete energy that is generally 

less than 500 KeV; each type of delayed neutron emitter has its 
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own discrete neutron energy. 

 

 Fig. 3.17  Mass Parabola for Odd A Nuclides 

        (From R. D. Evans, The Atomic Nucleus, 1955, McGraw Hill) 

 

 Fig. 3.18  Mass Parabola for Even A Nuclides 

       (From R. D. Evans, The Atomic Nucleus, 1955, McGraw Hill) 
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 There are numerous isotopes that can emit delayed neutrons. 

These are experimentally classified into six groups by half-

life.  The total delayed neutron fraction is   = .0064 for 235U 

and   = .0021 for 239Pu.  The effective half-lives range from 

approximately 0.2 s to 54 s.  The delayed neutron spectrum for 

each group is a composite of its constituents.  The presence of 

the delayed neutrons, even in such a small fraction, slows down 

the response time of a reactor system from the range of 

microseconds to the range of seconds, and therefore makes the 

problem of reactor control feasible. 

 

 Fig. 3.19  Delayed Neutron Precursor Chain 

 

 

 3.7  Energy Production in Fission 

 

 The average Q value for fission is about 180 MeV.  This 

energy appears as kinetic energy of the fission fragments, 

kinetic energy of fission neutrons, and as prompt   rays.  The 

balance of the energy obtained in fission is released by the 

fission products as they decay towards a stable state.  A 
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summary of the energy released in the fission of 
235
U is given in 

Table 3.3.  The amount of energy released by the fission 

products is a function of the length of time that the reactor 

has operated.  This is because many of the fission product 

chains require time to build up to saturation levels.  After 

shutdown, all of the chains decay.  If t is the time after 

shutdown and T is the time of operation, both in seconds, then 

an empirical formula for estimating the energy release as a 

fraction of the original operating power level is the Borst-

Wheeler formula 

 Table 3.3 

 Energy Released in Fission                                             

_____________________________________________________________________________  

       Form               Emitted Energy (MeV)            Recoverable Energy 

_____________________________________________________________________________ 

  Fission fragments              168                              168 

  Fission product decay 

                                  8                                8 

                           7                                7 

         neutrinos                12                        escape 

  Prompt                          7                                7 

  Fission neutrons                 5                                5 

  Capture   rays                  -                               3-12 

_____________________________________________________________________________ 

     Total                       207 MeV                         198-207 MeV 

 

Note that when a power reactor is shut down after long-term 

operation, several percent of its operating power is still 

released initially, requiring some provision for continued 

cooling. 

  .)T + (t - t0.065  =  f(t)
-0.2-0.2

 (3.11) 
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 Problems 

 

3.1 Tables of fission product decay chains and yields for 
235
U 

fission are available in the literature. 

a) Pick the first member of several representative 

chains with mass numbers between A = 72 and  

A = 161, postulate reasonable corresponding 

fission fragments, and calculate the Coulomb 

energy Eq needed to bring the particles together 

so that they just touch.  Use the following 

approximate equation to calculate the radii of 

the particles: 
 
                                  
                   R = 1.2 x 10

-13
 A

1/3
    (cm). 

 

         b) Look at the trend of Eq as fission becomes more 

asymmetric.  Is the observed fission yield versus 

mass number curve for 
235
U consistent with this 

trend?  Explain. 

 

3.2 Define, describe, and discuss the important consequences to 

reactor physics of the following two topics, giving as many 

examples as you can: 

       a) Spin-pairing; 

       b) Magic numbers; 

 

3.3 Show that the fission spectrum  (E) is normalized to 

unity, and calculate the average energy and most probable 

energy of the fission neutrons in the following spectra: 

       a)   Maxwellian spectrum; 

              b)   Cranberg-Frye spectrum. 
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3.4 Using the data given in Figure 3.14 for p( ) of 235U, 

compute the following quantities: 
                

       a) ;  

              b) ;2
                            

           c) D( ) = ,/1) - ( 2
 which is called the Diven   

                    parameter, and which appears in formulations 

                    of neutron fluctuation "noise" analysis. 

 

3.5 A power reactor has operated steadily at a thermal power of 

3000 MW for one year.  Plot the subsequent power release as 

a function of time over the period of one minute to one 

month following shutdown for refueling.  Comment on the 

need for cooling the fuel elements. 
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 CHAPTER 4 
 

 

DERIVATION OF THE NEUTRON DIFFUSION EQUATION 
 
 

  

  

 There are two different ways to derive the neutron diffusion 

equation. The most straightforward, but approximate, approach is 

to simply assume that neutrons in a medium diffuse from regions 

of high concentration to low concentration in a manner similar to 

the way that heat flows from regions of high temperature to low 

temperature.  A simple model is used to calculate the diffusion 

coefficient.  Then, the equation governing neutron flow is 

applied to calculate the net leakage from a differential volume 

element for use in the overall balance equation that we call the 

diffusion equation. 

 In order to accomplish the above derivation, several 

approximations must be made.  The basic defect is that neutrons 

do not simply flow continuously, but rather they travel in 

straight lines until they collide with an atom, and then they are 

either captured, or they abruptly change energy and direction.  

Therefore, we shall next derive the correct integro-differential 

equation that governs the neutron behavior at any position and in 

any material composition region in a reactor, and reduce it to 

the diffusion equation.  For simplicity, we shall consider only 

the case where all of the neutrons have the same speed and do not 

change energy but only change direction in a scattering collision 

(the one-group model).  In Chapter 6 we will expand our 

derivation to cover the energy-dependent case that leads to the 

multigroup diffusion theory model.  Our equation will be a 

neutron balance over a small volume element dr, and will have 

associated with it a term that accounts for each physically 
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significant process which takes place, such as neutron transport, 

absorption, fission, or scattering. 

 

 

 4.1  Fick's Law Derivation of the Diffusion Equation 

 

 Under certain conditions, the net current of neutrons that 

flows per second through a unit area normal to the direction of 

flow is given by Fick's law of diffusion as 

where the gradient  is expressed in Cartesian coordinates as 

 

                      .
z

k + 
y

j + 
x

i  


 =        (4.2) 

By net current, we mean the difference between the normal 

projections of all neutron paths that cross the surface going in 

any direction.  The factor of proportionality, called the 

diffusion coefficient D, is a function of the material properties 

of the medium. 

 We can derive Fick's law for mono-energetic neutrons using a 

set of fairly restrictive assumptions: 

 

  1)  the medium is infinite in extent; 

  2) the material properties are spatially constant; 

      3) there are no sources present; 

4) neutron absorption is negligible relative to 

scattering;    

      5) scattering is isotropic in the LAB system; 

      6) the neutron flux varies slowly with position; 

      7)  there is no time variation of the flux. 

 

 ,D-  = J


 (4.1) 
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 Fig. 4.1  Calculation of Neutron Current Density 

 

 We shall first calculate the z-component of the current, Jz, 

and then generalize to the net current J

.  Consider a small area 

dS lying in the x-y plane of the coordinate system shown in 

Figure 4.1.  Neutrons scatter in the volume element dr at the 

rate of s ( r

)dr per second.  These neutrons are assumed to be 

scattered isotropically into a sphere centered about dr such that 

the un-collided number that would cross the surface of the sphere 

at a radius r, corresponding to the distance to dS, is inversely 

proportional to the surface area 4 r
2
.  Unfortunately, dS is not 

perpendicular to the radius of this sphere, so that the potential 

fraction actually crossing dS is based on the projection of dS 

along r, namely, 

But not all of these neutrons reach dS.  Because of scattering, 

the fraction e
- r

s  scatters to another direction.  We ignore 

multiple scattering. 

 As seen in Figure 4.1, the differential volume element in 

 .
r4

 dS
 = [fraction]

2

cos
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spherical coordinates is 

The total number of neutrons that pass through the area dS in the 

negative direction is the integral of all possible downward 

contributions from the entire upper half plane, or 

 In order to evaluate this integral, the flux must be known 

as a function of position.  We make the approximation that the 

flux varies slowly with position, even though the distance is not 

differentially small, such that the flux at any point r

 can be 

expressed in terms of flux at the position of dS by the truncated 

Taylor series expansion 

The independent variables may be expressed in spherical 

coordinates by the expressions 

 When Eq. (4.5) is inserted into Eq. (4.4), and the integral 

over d  is performed over the range of 0 to 2 , one finds that 

the x and y contributions are zero due to symmetry.  The 

remaining two terms can be evaluated to obtain the expression  

 .d ddr  sin r  =r  2d  (4.3) 

 dr. d d   e     
4

dS
 = dS-J r-/2

o

2

oos
s sincos   (4.4) 

 ..., + 
z

z  + 
y

y  + 
x

 x +  = z)y,(x,
ooo

o
      (4.5) 

 

     . r =z 

 

  r = y

 

  r = x

cos  

sinsin  

cossin  

 (4.6) 
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 A similar integration can be performed over the lower half 

plane to give the number of neutrons that pass upward through dS 

in the positive direction.  The integration over  proceeds from 

/2 to , giving the expression 

The net current Jz in the positive z-direction is the difference 

between J+ and J , or 

 Similar expressions are obtained for Jx and Jy.  These may 

be added together vectorially to give Fick's law in the form 

 

where the diffusion coefficient in this approximation is defined 

as 

In Section 4.5 a similar expression, with a somewhat modified 

 

.
z6

1
 + 

4
 = 

dr] d d   re    )
z

( + 

dr d d   e   [
4

 = -J

os

o

2r-/2
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oo
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o

2

ooo

s

s

s

   

sincos 

sincos  

 (4.7) 

 .
z6

1
 - 

4
 = J

os

o
+    (4.8) 

 .
z3

1
 - = -J - J = J

os

+z      (4.9) 

 
,D-  =  

z
k + 

y
j + 

x
i 

3

1
  = 

Jk + Jj + Ji  =  J

s

zyx





 (4.10) 
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form of the diffusion coefficient, is obtained from the transport 

derivation. 

 

 Fig 4.2  Calculation of Neutron Leakage 

 

 We now consider the neutron balance in the volume element 

shown in Figure 4.2.  The net leakage of neutrons out of the 

region in the positive z-direction is the difference between the 

net currents entering and leaving in that direction, or 

A truncated Taylor's series expansion of the derivative of the 

flux at z + dz can be made in terms of the derivative of the flux 

at z.  This expansion, which is consistent with that made for the 

flux itself, is 

 dy. dx )
z

(- )
z

( D- = dy dx )J - J(
zdz+zzdz+z    (4.11) 

 . ... +dz )
z

( + )
z

( = )
z

(
z2

2

zdz+z
     (4.12) 
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When Eq. (4.12) is inserted into Eq. (4.11), the result is, 

Similar expressions are obtained in the x and y directions, 

leading to an expression for the total leakage of the form 

where 2 is the Laplacian operator. 

 The diffusion equation is the equation that describes the 

total neutron balance in the volume element dr = dxdydz.  When 

all of the possible contributions in the one-speed case are 

included, we obtain the equation 

Note that there is a theoretical contradiction here, since the 

leakage was derived in the absence of sources, absorption and 

time-dependence of the spatial flux. 

 In order to solve the diffusion equation, two boundary 

conditions are needed.  Heuristically, we will assume that the 

flux must be continuous everywhere, since otherwise it would not 

be slowly varying, which was a condition used in deriving Fick's 

Law.  For the second boundary condition, we will assume that the 

current J

 is also continuous, since in the absence of sources 

those neutrons that enter a surface area must leave on the other 

side. 

 

 dz.dy  dx 
z

D- = 
direction-z

the in leakage Net
2

2

   (4.13) 

 , D- = )
z

 + 
y

 + 
x

( D- = 
 secondper volume

unit per leakage Neutron
2

2

2

2

2

2

2

               (4.14)  

 

 

        .D +           -        +          S=       
t

 
v

1
   

leakage   absorption  fission      source  change of rate

2
af    

 

       (4.15)  
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 4.2* The One-Speed Transport Equation 

 

 In the context of the one-speed model, the quantity 

n( r

,


,t)drd  is the total number of neutrons in a volume 

element dr about r

, traveling in direction d  about 


, at  

time t.  In Cartesian coordinates, the situation is as depicted 

in Figure 4.3. 

 Associated with the neutron density is the angular neutron 

flux, which is given by the expression 

A related quantity is the directed neutron flux, which is 

obtained by multiplying the angular neutron flux by the direction 

vector 

, i.e., 

 

 Fig. 4.3 Neutron Density in Cartesian Coordinates 

 

The macroscopic cross sections at position r

 are related by the 

 t).,,r  vn(=  t),,r


(  (4.16) 

 t).,,r(  =  t),,r


(  (4.17) 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

85 

   

expression 

where T is the total cross section, s contains both elastic 

and inelastic scattering, and a contains both capture and 

fission.  Recall that the total scattering cross section is the 

integral over the differential angular scattering cross section, 

i.e., 

      Beginning with an element of phase space defined as 

we define our balance equation in words as 

 

             
d in

rate loss
  

d in rate

production
  

d in neutrons of

change of rate

 

 
  

  
  

   

  
.         (4.18) 

  
                                                           

The production rate term includes neutrons produced by 

independent sources (e.g., a plutonium-beryllium source), 

neutrons scattered elastically or inelastically into the 

direction d  about 

 from any other direction 


', and neutrons 

produced by fission, which are assumed to appear at the site of 

the fission event.  The loss rate is due to the absorption 

processes of capture and fission, and is also due to streaming 

across the faces of the volume element without collision (i.e., 

leakage).  We also include all scattering processes that take a 

neutron out of the direction d  about 

 and send it into any 

other direction 

'. 

 Probably the most complicated term is the leakage term, 

which will be treated first.  We will work with only one 

Cartesian direction at a time and then sum the results into a 

 ),r( + )r(  =  )r as


(T  

 

 .d )(  = s alls


   

 

 ,dr   d = d  
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vector form.  The result will, in fact, be valid for any 

coordinate system.  It is convenient at this point to redraw the 

volume element so as to emphasize the faces of the cube in the z 

direction, as shown in Figure 4.4. 

 The number of neutrons going in the direction d  about 

 

that cross into the volume element dr per second through the 

lower surface dS = dxdy is given by the projection of the vector 

flux in the z direction, namely, 

The number leaving the top surface is similarly given by the 

expression 

 

 Fig. 4.4  Leakage Component in the z-direction 

 

The net out-leakage, which we want to include in the neutron 

 .ddy dx  t),z,y,(x,  k


 
 

 .ddy dx  t),dz, + zy,(x,  k
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balance as a loss term, is the net of the number leaving minus 

the number entering, i.e., 

We expand the first term in a Taylor series and truncate it to 

the order of dz, giving the approximation 

                                                                

We then insert this expression into the equation for out-leakage 

to obtain  

 

Likewise, for the x and y directions we obtain the contributions 

and 

The vector 

 in Cartesian coordinates is written in components 

as 

 

.ddy dx  t )],z,y,(x, -                            

 

t ),dz, + zy,((x,[   k 




 =     

directionz  the

in rate leakage-Out

 (4.19) 
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Note that: 

Hence, when the out-leakage is summed over all directions, one 

obtains the quantity                                             

which is a vector form that is valid for any coordinate system. 

 The loss rate term due to collisions of all types is simply: 

          

    (4.25) 

          

           

We include the total scattering cross section because we are 

interested in all scattering out of 

 into any other direction. 

 The production rate due to in-scattering is somewhat more 

complicated.  Here we must include scattering of neutrons going 

in any direction 

' where the scattered neutron ends up in the 

interval d  about direction 

.  This process is governed by the 

differential angular scattering cross section between the two 

angles, which we call the transference function.  We must sum 

over all such starting angles 

', i.e., we write the integral 

     Fission assumes a similar form in the one-speed 

approximation, where we neglect the fact that the fission 

neutrons have an energy spectrum and only account for the average 

 .  =    k    ,  =    j    ,  =    i zyx
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number of neutrons produced per fission, .  Hence, the fission 

term is 

 The source rate is given very simply by the term 

 Finally, the rate of change of the neutron density in d  is 

given by the expression 

 Combining all of the above contributions to the balance 

equation, we obtain the following equation after cancellation of 

the differential elements drd  that appear in each term: 

This is known as the one-speed neutron transport equation, or the 

Boltzmann equation.  As a point of interest, this equation 

corresponds to the Eulerian interpretation as found in fluid 

mechanics.  If one takes the Lagrangian interpretation of moving 

along with the vector field, one can combine the rate of change 

and leakage terms into what is known as the total derivative, 

     .ddr  d t),,r(),r  


 ( = 
fission to due

d in rate Production
f all

      (4.27) 
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defined as 

and rewrite the balance equation accordingly. 

 

 

 4.3*  One-Dimensional, One-speed Transport Equation 

 

 It is possible to proceed directly towards the reduction of 

the Boltzmann equation to the diffusion equation using vector 

operators and expansions.  At this point we will avoid most of 

the detailed mathematics by treating a fairly straightforward 

special case that illustrates the steps that need to be taken and 

the proper form of the general result.  We will use only the 

first two terms of a series expansion for the flux, and these 

will be written out explicitly. 

 We look at the case where the system is infinite in both the 

x and y directions so that the only variation of interest occurs 

in the z direction.  We redraw our Cartesian coordinate system so 

as to explicitly show the components of the vector 

, as 

illustrated in Figure 4.5.  In terms of our previous notation, 

the angular components are 

 Looking at the leakage term, we rewrite this expression as 

But 0 = 
y

 = 
x

 for this special case, and cos  = .  Hence, the 

vector operation in the leakage term is reduced to the scalar 

form 

 n,  v + 
t

n
  

Dt
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 + 
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 + 
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 Next, notice that the flux in the one-dimensional model is 

not dependent upon the azimuthal angle  but only on the polar 

angle  (i.e., ) as shown in Figure 4.6.  We take advantage of 

this rotational symmetry.  We therefore integrate the transport 

equation over the azimuthal angle  by applying the operator 

d
2

o
 separately to each term of the equation.  We make the 

following definitions: 

and 

 

 Fig. 4.5  Cartesian components of 
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 Fig. 4.6  Directional Dependence of 

 in the One- 

Dimensional Case 

 

Upon integration over the rotational angle, the Boltzmann 

equation is reduced to the following form: 

Note that the 

 dependence still remains in the integral terms 

so that further reduction is necessary. 

 The transference cross sections are normally not dependent 

upon the values of the vectors 

 and 


', but only upon the 

polar angle o between them.  Making use of rotational symmetry, 

we can write these terms as 
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and 

where o is defined as (

' · 


)  o = cos o.  Furthermore, 

the fission cross section is usually isotropic in the laboratory 

system and has the form f(z, 

'·


) = f(z)/4 .  Noting that 

d ' = -d 'd , we see that the fission integral becomes 

where use has been made of the definition of (z, ) given by 

Eq. (4.32). 

 In order to proceed further with the scattering transference 

function we need to do two things: 

 

        1. expand the actual cross-section data in a convenient  

 angular series; and 

        2. find a relationship between o and , ',  and '. 

 

 As a first approximation for the elastic and inelastic 

scattering terms we try an expansion in terms of Legendre 

polynomials.  These are natural functions for the system under 

consideration because the Legendre polynomials are functions of 

 and are orthogonal over the range of -1 <  < +1.  We 

truncate after the first two terms (this is an arbitrary choice) 

and therefore write 

which comes from the first two terms of the general expansion 

 ,)/2(z, = )  (z, = )(z,
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where 

The Legendre polynomials also obey the recursion relationship 

 

The factor 1/2  is included because the cross sections are 

assumed to possess rotational symmetry. 

 The orthogonality property of Legendre polynomials states 

that 

where lm is the Kroniker delta.  We have experimental data for 

s( o).  We can actually fit this data by choosing the 

coefficients sl properly.  Hence, the sl values can be 

considered to be known data.  An interpretation of the terms 

follows by multiplying Eq. (4.37) by Pl( o) and integrating over 

o for l = 0,...n.  For l = 0, 

which is the total scattering cross section. 

For l = 1, 

 

etc.
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which is proportional to the total scattering cross section since 

the average cosine of the scattering angle for a single atom 

species is defined as 

This is the place where 
o
 enters naturally into the transport 

equation.  Of course, for a mixture of atom species, an 

appropriate average 
o
 must be used. 

 Now we need a transformation between o and the actual 

angle cosines ' and .  Recall the definition of o: 

This result is a simplified form of a more general expression 

known as the addition theorem for Legendre functions.  (See 

Appendix D.) 

 We use the foregoing terms in the scattering integral to 

obtain 

The first term in the square brackets is treated easily and gives 

The second term in the square brackets simplifies considerably by 
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noting that 

The balance of the expression is therefore 
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     Putting all of the terms together, the final form of the 

one-dimensional, one-speed Boltzmann transport equation is 

Note that the entire equation has been reduced considerably.  

There are no vector terms, and the angular dependence is no worse 

than the product of  and (z, ).  But there are still flux 

integrals.  To proceed further, we must simplify the flux and 

source terms by yet another expansion. 

 

 

 4.4*  Derivation of the Pl Equations 

 

 We now have a form of the one-speed, one-dimensional 

Boltzmann transport equation that is considerably simpler than 
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our previous equation but is still difficult to solve.  There are 

three possible approaches. 

 

 1. Separation of variables - This is a use of Case's 

method of singular eigenfunctions, which will give 

exact solutions to certain simple problems when one 

does a great deal of difficult mathematical 

manipulation.  This is not the most practical solution 

method. 

 

 2. Discretization of the angular variable into several 

discrete directions, followed by numerical solution - 

This is the discrete ordinates or Sn method that is 

widely used in industry. 

 

 3. Reduction of the equations by further expansion in 

Legendre polynomials - These are the Pn methods that 

lead to diffusion theory and higher-order solutions.  

The resulting equations are often discretized in space 

and solved numerically. 

 

We proceed with the third approach to the problem.  Note that the 

source terms are known functions while the flux terms are the 

unknowns to be determined. 

 We make an expansion of the source and the flux in the same 

Legendre form that enabled simplification of the transport 

equation.  Let the known source be written as 

 

Again, we fit the coefficients So and S1 to the actual data.  The 

physical interpretation of the terms is obtained by successively 

 (z).S 
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multiplying Eq. (4.47) by Pl( ) and integrating over .  For l = 

0, 

which is the total source at z. 

For l = 1, 

which is the total source current in the z direction at z. 

 The unknown flux is expanded similarly as 

The physical interpretation for l = 0 is 

which is the total flux at z. 

For l = 1, 

which is the net neutron current in the z direction at z.  Note 

that the current is directed along the axis, which implies that 

it is a vector quantity.  The balance equation with the two-term 

source and flux expansion is the following: 
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   Since we have two unknowns, o(z) and 1(z), we need two 

equations.  These are obtained by successively multiplying  

Eq. (4.53) by Po( ) and P1( ) and integrating over .  For  

l = 0, using the orthogonality of the Legendre polynomials, we 

obtain 

For l = 1, we obtain 

 If the flux expansion had been carried out to more terms, 

say l = 3, we would have repeated the above process by weighting 

by P2( ) and P3( ) to obtain a total of four equations in four 

unknowns.  Note that the source and cross sections need not be 

expanded to the same order as the flux. 
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 Once we solve the coupled set of equations for the terms 

o(z), 1(z), etc., we can reconstruct the angular flux (z, ) 

from the defining expansion given by Eq. (4.50).  In order to 

solve the equations, we need boundary conditions at the outer 

surfaces.  The spatial boundary condition on the original 

Boltzmann equation is that the angular flux (z, ) is 

continuous across the boundary (i.e., any neutron that leaves the 

surface going in direction  arrives in the other region).  The 

corresponding Pn( ) boundary conditions are: 

 

               o(z)   is continuous; 

               1(z)   is continuous; 

                          etc. 

 

  

 4.5  The Pl Diffusion Theory Approximation 

 

 If we now write the time-dependent Pn equations and truncate 

to order n = 1, we have the following set: 

and 

Note that an extra derivative term appears in the second 

equation.  In order to obtain the diffusion equation, we must 

make the following additional approximations to the second 

equation: 

 

 1. Neglect the source current, S1(z): 

 2. Neglect the next higher spatial derivative, 2(z)/ z; 
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    3. Neglect the time derivative of the current, 1(z)/ t. 

 

Also recall that 

and 

 

Inserting these quantities into our two equations, we obtain the 

expressions 

and 

 We solve Eq. (4.59) for 1(z), obtaining 

If we define the P1 diffusion coefficient as 

which is different from that used in Eq. (4.10), we obtain Fick's 

Law for the total current in the z direction, namely, 
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Note that we had to ignore three separate quantities, listed 

above, to obtain this result.  The transport cross section tr 

enters here also. 

 At this point, we take the spatial derivative of Eq.(4.62) 

and use it to eliminate the 1/ z term in Eq. (4.58).  If D is a 

function of position, then 

The insertion of this expression into Eq. (4.58) gives 

Generalization to three dimensions now leads to the usual form of 

the Diffusion equation, namely 

with the associated boundary conditions, 

and 

When D is independent of position, the leakage term is replaced 

by 

Note that scattering enters the one-speed balance equation only 

in the leakage term because scattering does not otherwise lead to 

the loss of a neutron. 
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 4.6  Comments on the P1 Equations of Diffusion Theory 

 

 The Boltzmann equation is valid everywhere.  The Pn 

approximation for odd n truncates some of the more asymmetric 

components of the flux and therefore an error is made in regions 

where these components are important.  Specifically, near a 

boundary with a vacuum region or a strong absorber, one would 

expect neutrons to enter these regions but few if any to return; 

this is where lower order approximations are least valid.  On the 

other hand, in interior regions of moderately absorbing media, 

which may include most of the volume of a reactor, the flux 

distribution would be expected to be fairly isotropic and 

therefore a low order approximation would be valid.  The P1 

diffusion theory approximation fits the latter case; by defining 

the diffusion coefficient in terms of the transport cross 

section, the important effect of linearly anisotropic scattering 

in the laboratory is included in the formulation. 

 There are a number of specific situations for which the P1 

equations are not adequate.  Among these are the following: 

 

 a) Diffusion theory is inappropriate for shielding design. 

We generally employ shields that are many mean free 

paths thick, composed of multiple layers of strongly 

absorbing materials, moderating materials, high-Z 

materials for gamma ray attenuation, and rarefied 

materials such as air.  The depth of penetration tends 

to make the angular flux distribution highly 

anisotropic, while the nature of the materials 

themselves requires a very detailed treatment of the 

neutron and gamma ray energy and angle dependence.  

Shields are therefore usually calculated using multi-

group discrete-ordinates Sn transport codes such as 

TORT(3D), DORT(2D) or ANISN (1D), or using Monte Carlo 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

104 

   

codes such as MORSE or MCNP(3D). 

 b) Diffusion theory does not work too well for small 

heterogeneous regions such as the basic PWR cell 

consisting of a UO2 fuel pin and water.  Here, we 

usually employ local transport calculations to obtain 

homogeneous cell-averaged macroscopic cross sections 

that can then be used in a diffusion theory calculation 

of the entire fuel assembly.  The thermal group cell 

problem is usually solved with either Integral 

Transport theory as in the THERMOS code, or with P3 or 

its equivalent, as in the GAMTEC code. 

 c) Diffusion theory does not work for control rods or 

lumped absorbers.  These problems are solved using a 

transport method, and the results are then used as a 

special extrapolation boundary condition for a 

diffusion calculation. 

 d) Finally, diffusion theory is completely inadequate for 

designing very small high-leakage assemblies, i.e., 

weapons. 

 

 Note that the diffusion equation is a second-order 

differential equation in space and a first-order one in time.  

Hence we require two boundary conditions for each region in the 

problem, plus an initial condition.  As formulated above, the 

equations are inhomogeneous when a source is present.  The 

solution will consist of a particular solution corresponding to 

the source plus a transient solution corresponding to the initial 

condition.  If the multiplication factor of the system is less 

than unity, i.e., if we produce less than one fission neutron per 

neutron absorbed, then the transient solution will die away with 

time leaving a steady state behavior corresponding to the 

particular solution, where all features of the solution are 

uniquely determined by the source distribution.  On the other 
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hand, if the multiplication factor is greater than or equal to 

unity, then the transient solution will increase without bound.  

When the multiplication factor is much greater than unity, the 

result is called an excursion and the behavior is independent of 

the source contribution.  When the multiplication is exactly 

equal to unity, i.e., the reactor is critical, then the source 

simply keeps adding neutrons and each neutron present is 

replenished by fission. 

 When no source is present, the equations become homogeneous. 

The only possible steady state solution occurs when the 

multiplication factor is unity; otherwise the flux level either 

increases or decreases with time.  This is a rather inconvenient 

situation with regard to reactor design because one rarely 

chooses a material composition and reactor size that are just 

exactly critical.  To circumvent this difficulty, one usually 

converts the diffusion equation in the steady state to an 

eigenvalue or characteristic value problem by dividing the 

fission production term by a constant that we call keff, the 

effective multiplication factor.  This is the effective 

criticality for a stationary system that is not exactly critical. 

One must find the value of keff as well as the corresponding flux 

solution, and since only two boundary conditions are available to 

solve for three unknowns, one of the unknowns must be left 

arbitrary.  This, in fact, corresponds to the observation that a 

reactor can be critical and operate at an arbitrary power level 

from milliwatts to megawatts.  The eigenvalue formulation of the 

diffusion equation in the one-speed approximation is 

Since we now have separate symbols for flux and current, we have 
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dropped the subscript zero on the flux. 

 If we have a multi-region problem, a similar equation is 

used for each region, but the value of keff corresponds to the 

reactor as a whole and is therefore the same in each region.  

Hence, we have a second-order equation in each zone and need two 

boundary conditions for each zone.  These boundary conditions are 

continuity of flux and continuity of current at each internal 

interface plus one boundary condition on each external surface 

such as zero current (symmetry), zero flux, or extrapolation to 

zero at an outer point.  Current sources are not allowed interior 

to a region in diffusion theory, but may be placed in a problem 

as a boundary condition. 

 

 

 4.7*  Alternate Derivation of the Diffusion Equation 

 

 It is useful to derive the diffusion equation in an 

alternate manner using certain vector relationships that are 

commonly employed in diffusion theory proofs.  We consider a 

neutron balance over a region having a volume V and a surface 

area S, as shown in Figure 4.7. 

 

 Fig 4.7  Leakage from a Volume V 
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In deriving the leakage term in the Boltzmann equation, we made 

use of the directed flux along the direction 

 in d .  The net 

neutron current density vector is simply the integral of this 

quantity over all angles, which we define to be the vector J

: 

 

              d ),r(   J
 all


                          (4.67) 

 

In other words, there is a net flow or current of neutrons in 

some direction at each point in space.  The component of this 

current that crosses any given surface dS is equal to the dot 

product of the vector current J

 and the unit normal to the 

surface n

.  Hence, the net leakage from the volume element is 

the integral of the current component over the entire surface of 

the region, or 

 We complete the neutron balance over the region by adding in 

the other components such as isotropic sources and absorption.  

The resulting balance equation becomes 

 

Now, we use the divergence theorem to convert the surface 

 dS. J  n


surface
  =leakage]  -out [net  

(4.68) 

 

dS. J  n  - 

 

leakage

 

 

dr   -dr    +dr  S =r 

surface

avolumevolumevolume


 

      d 
tv

1

 

absorption          fission       source          change of rate

volume

 (4.69) 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

108 

   

integral into a volume integral.  The divergence theorem states 

that 

Replacement of this expression in the balance equation leads to a 

similar volume integral in all terms.  Therefore, the expression 

must also be satisfied in differential form, which is 

If we now assume the validity of Fick's law for J

 from Eq. 

(4.62), we obtain the P1 equation derived previously, namely, 

 

Note that we do not consider either the time rate of change of J

 

or current sources in our derivation, consistent with our 

treatment of the diffusion approximation to the Boltzmann 

equation. 

 

 

 Problems 

 

4.1 Show that the derivation of Fick's law is equally valid when 

the next term in the Taylor's series expansion is retained. 

 

4.2 Show that, when a small amount of absorption is retained in 

the direct Fick's law derivation, the diffusion coefficient 

is given by the expression 

 dr. J   = dS J  n
volume


  

surface
 

 

 . + S +  - J fa          -  =  
tv

1 
 (4.70) 

 .  +    S+    -   D    =  
tv

1
fa  (4.71) 

 .
3

  =  D
2
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4.3 Do the following: 

 

  a) On polar graph paper plot Po( ), P1( ) and P2( ) 

versus the polar angle , where  = cos . 

  b) On a separate sheet of polar graph paper plot the 

functions: 

   1. (z1, ) = 1/2 Po( ) + 1/2 P1( ); 

          2. (z2, ) = 1/2 Po( ) + 1/3 P1( ) + 1/3 P2( ); 

          3. (z3, ) = 1/2 Po( ) + 1/3 P1( ) + 1/6 P3( ). 

   These can be considered to be the angular fluxes  

     at three points along the z axis. 

       c) Based upon the above results, how many components 

would one need in order to approximate a parallel 

beam of neutrons traveling from left to right, 

where  = 0 ?  What does this say about the 

adequacy of using diffusion theory, which assumes 

that only the Po( ) and P1( ) components are 

present? 

 

4.4 Prove that the first four Legendre polynomials are 

orthogonal over the range of -1 <  < 1. 

 

4.5* Starting from the one-dimensional, steady-state, one-speed 

Boltzmann transport equation, derive the P3 transport 

equations under the assumption that the source is isotropic 

and the scattering cross-section expansion contains only the 

terms so and s1. 

 

4.6* At the symmetry plane located at z = zo in a one-dimensional 

problem, the angular flux is reflected in a mirror-like 

fashion such that 

 ),-z(  =  ),z( oo   
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      and 

  a) Prove that the above equations imply that the Pm 

flux components satisfy the expressions 

       and 

 

  b) Show that the above boundary conditions applied to 

the P1 equations are equivalent to the diffusion 

theory boundary conditions at a plane of symmetry. 

 

4.7* Derive the P2 transport equations and compare them to the P1 

equations for the one speed, one-dimensional case.  Assume a 

solution of the form n(z) = Ane
kz
 and use it to find the 

allowable values of k.  Calculate the diffusion coefficient 

D.  Comment on the general usefulness of the even-order 

expansions. 

 

 

 

 

 

 

 

 

 

 

 .| 
dz

)(z,-d
 -  =  |

dz

)(z,d
z =z z =z oo
  

 odd,   m for  0  =  )z( om
  

 even.   m for  0  =  |
dz

d
z =z 
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 CHAPTER 5 

 

ANALYTICAL SOLUTIONS TO THE  

ONE-SPEED DIFFUSION EQUATION 
 

 

  

 

 Now that we have derived the diffusion equation in the one-

speed approximation, we will seek analytic solutions to this 

equation for a variety of simple geometrical configurations.  But 

first, we will generalize the boundary conditions to handle the 

two special situations of a vacuum boundary and a boundary near a 

source plane.  The idea of a partial current is very useful here. 

 Next, we will look at problems containing neutron sources, 

placed either at interfaces or contained within one of the 

regions.  Since these problems are inhomogeneous, complete 

solutions will be obtained whose behavior is dependent on the 

nature and location of the source. 

 In the absence of a source, the problem becomes homogeneous. 

If we seek steady state solutions, these will exist only for 

certain characteristic values of an extra parameter, called the 

effective multiplication factor, which must be introduced into 

the equations.  In this case, solutions will be obtained which 

contain an arbitrary constant whose value must be specified 

externally. 

 Finally, we shall see that the analytic problem solution 

rapidly becomes unwieldy or impossible if there are more than a 

few spatial regions and spatial dimensions involved, even in the 

one-speed case.  This leads us to Chapter 6, where numerical 

solutions to the few-group equations are discussed. 
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 5.1  Partial Currents and the Extrapolated Boundary 

Condition 

 

 The angular flux in the one-dimensional P1 diffusion theory 

approximation is given by an expression that is derived in 

Section 4.4, namely, 

 

The  o component is called the total flux  (z), and the  1 

component is called the current J(z).  Consider a boundary 

between regions A and B as shown in Figure 5.1, and call all of 

the current traveling to the right J+ and all of the current 

traveling to the left J-.  Naturally, the positive components 

have a polar angle   between 0 and 90, and the negative 

components have a polar angle between 90 and 180.  The 

corresponding values of   are 1 to 0 and 0 to -1, respectively. 

 We obtain the partial currents by integrating P1(  ) times 

the angular flux over the appropriate interval.  Hence, the 

positive partial current to the right is 

 

 Fig. 5.1  Partial Current Balance at a Region Interface 

 J(z). 
2

3
  +  

2

(z)
  =  )(z,


  (5.1) 

 

.
2

J(b)
  +  

4

(b)
  =

d  
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3J(b)
  +   d  
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(b)
   =

d )(b,    =  (b)J

2
1

0

1

0

1

0+
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Likewise, the negative partial current to the left is 

 We now use the one-dimensional form of Fick's law to replace 

J(b), consistent with our Pl diffusion theory.  Since 

we obtain 

and 

 The above two equations are an alternate form of writing the 

boundary conditions at an interface.  Specifically, (b)J
A
+  must 

equal (b)J
B
+  since neutrons leaving one region must enter the 

other.  Similarly, (b)J  =  (b)J
B
-

A
- .  If we write these expressions 

out, at the interface we obtain 

and 

By adding the two expressions, we obtain 

 

.
2

J(b)
  -  

4

(b)
  =

d  
2

3J(b)
  +  d  

2

(b)
  =

d )(b,    =  (b)J

2
1-

0

1-

0

-1

0-












 (5.3) 

 ,
dz

d
 D-  =  J(z)

 (5.4) 

 |
dz

d
 

2

D
  -  

4

(b)
  =  (b)J bz=+


 (5.5) 

 . |
dz

d
 

2

D
  +  

4

(b)
  =  (b)J bz=-


 (5.6) 
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d
 

2

D
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  =  

dz
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  -  

4

BBBAAA


 (5.7) 
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By subtracting the two expressions, we obtain  

or 

Hence, we have continuity of flux and continuity of current, as 

before. 

 

 Extrapolation Distance.  When region B is a vacuum as shown 

in Figure 5.2, there is only an outward current, (b)J
A
+ , and no 

return current, i.e., 0 =(b)J
A
- .  Hence, 

Solving for the slope at the boundary, we obtain 

 

 Fig. 5.2  Partial Currents at a Vacuum Boundary  

 (b). =  (b)
BA   (5.9) 
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d
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From this expression we can define an extrapolation distance, 

called d, where the flux would go to zero if extrapolated 

linearly, as shown in Figure 5.3.  This distance is 

 

 

 Fig. 5.3  Extrapolation Distance Diagram 

 

 Since the Pl equations are only an approximation to the 

transport equation, the extrapolation distance is also only an 

approximation.  The situation is sketched in Figure 5.4.  The 

actual flux does not go to zero because the neutrons that leave 

the surface simply stream away (there is nothing to stop them).  

This is why we must do shielding calculations for reactor 

systems.  The transport theory extrapolation distance is slightly 

larger than the diffusion theory value, and is given by the 

expression 

This is the value we use in elementary reactor theory.  For 

strong absorption, or for curved boundaries with small radii, the 

correct value is somewhat smaller than that given above. 

 .0.667  =  
3

2
  =  

|/dd

(b)
 -  =  d A

tr

A
tr

bz=A

A







 (5.11) 

 . 0.7104  =  d
A
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 Fig. 5.4  Transport Theory Extrapolation Distance Diagram 

 

 Additional Boundary Conditions.  For small reactors, where 

leakage is an important part of the total neutron balance, the 

transport theory-based extrapolation distance boundary condition 

given above is commonly used on the outer boundary.  On the other 

hand, when the reactor is large, the extrapolation distance can 

often be ignored without significant error.  This gives what is 

known as a zero-flux boundary condition, written as 

Furthermore, when a core possesses half or quarter-core symmetry, 

it becomes wasteful to treat the entire reactor when a symmetric 

portion will provide the complete solution.  In this case, the 

internal symmetry planes can be represented by a zero-current 

boundary condition 

 One other common situation that involves a special boundary 

condition concerns the treatment of control rods in reactors.  A 

 0.  =  (b)
A  (5.13a) 

 0.  =  | 
dx

d
b=x

A


 (5.13b) 
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number of different-shaped control rods are in current use, as 

illustrated in Figure 5.5.  The slab-type control rod is typical 

of that found in a pool-type reactor such as the UVAR; these rods 

are made of boral, which is a boron-aluminum alloy.  The 

cruciform-shaped control rod is an early design used in the 

Yankee PWR located at Rowe, Massachusetts; it is made of a 

silver, indium and cadmium alloy.  The rodded-cruciform shape is 

typical of that used in BWR's; the rods are usually filled with 

boron carbide.  Finally, the rod cluster is typical of control 

rods in modern PWR's; the rods are usually filled with boron 

carbide. 

 

 Fig. 5.5  Typical control rod geometries. (a) Thin slab.  

(b) Cruciform. (c) Rodded cruciform. (d) Control rod cluster. 

 

 Unfortunately, control rods cannot be represented accurately 

using diffusion theory.  Instead, we must supply the medium 

surrounding the control rod with an alternate boundary condition 
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that describes the fractional current flowing into the absorbing 

medium.  This condition is called the "blackness" or absorption 

coefficient, and is given by the expression 

Alpha is usually obtained from a separate transport theory 

calculation.  A related boundary condition is called the "albedo" 

or reflection coefficient, which is defined as 

An even more convenient computational form of the blackness 

boundary condition is analogous to the extrapolation distance, 

and is given by the expression 

A completely black control rod with   = 1 would have an 

extrapolation distance of dr = 0.71  tr, corresponding to a value 

of C = 0.469.  As the control rod becomes gray, or less 

absorbing, dr increases and C decreases.  The amount of blackness 

depends upon the thickness of the rod, as well as on its material 

properties. 

 The control rod boundary condition is not commonly used in 

analytical calculations.  But it is used in computer codes such 

as VENTURE, where the individual control rod regions are replaced 

by externally-supplied boundary conditions of the form given by 

Eq. (5.l3e).  The flux inside the rod region is set equal to 

zero, and the boundary condition is used to calculate the flux in 

the adjacent region.  The absorption in the control rod is then 

obtained as the product of the control rod surface area and the 

current entering that surface as described by Eq. (5.l3e).  We 

 .
(b)J

(b)J
  =  

(b)J

(b)J - (b)J
  =  

A
+

A

A
+

A
-

A
+  (5.13c) 

 . - 1  =  
(b)J

(b)J
  =  

A
+

A
-   (5.13d) 

 .
(b)

(b)J
  =  C

A

A
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are led to the important conclusion that neutron absorption in a 

control rod is proportional to the total surface area of the rod, 

as long as the rods are spaced sufficiently far apart that the 

presence of one rod does not shadow or depress the flux near 

another rod. 

 

 

 5.2 Source Plane Boundary Conditions.  

 

 The partial currents form an alternate set of boundary 

conditions at an interface in lieu of continuity of flux and 

current.  If we have an infinitely thin planar source located at 

the interface, then the boundary conditions are altered somewhat. 

If we denote the source strength to the right as S+ and to the 

left as S-, as shown in Figure 5.6, then the general conditions 

become 

where 

These conditions state that the current reaching the opposite 

region is augmented by the source.  Note that the source need not 

be symmetric since it enters only as a boundary condition, but 

sources are usually isotropic. 

 

 Fig. 5.6  Partial Currents in the Presence of a Source 

 ,J  =  S  +  J   and   J  =  S  +  J
A
--

B
-

B
++

A
+  (5.14) 

 .d )S(z,   =   S   and   d )S(z,  =  S
0

1--

1

0+    (5.15) 
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 Plane Source in an Infinite Medium.  A very simple example 

is an infinite medium having an infinite isotropic plane source, 

located at the origin, of strength S neutrons/cm
2
-s.  The 

diffusion equation is 

or, defining L
2
  D/ a, where L is called the diffusion length, 

       0.  =  
L

1
  -  

dx

d
22

2




       (5.17) 

We will attach a physical significance to L later.  The above 

homogeneous equation has the general solution 

where A1 and A2 are constants to be determined by the boundary 

conditions.  Now, the flux must be finite as x  ± , and we 

note that for x  + , ex/L  , while for x  - , e-x/L  .  

Thus, one of the constants is zero and the solution in each half 

plane must be of the form 

 

The remaining constant A must be found by using a boundary 

condition at the source. 

 Since we have an isotropic source located on a plane of 

symmetry, we can heuristically say that the net current in each 

direction is one half of the source strength, or 

Performing the indicated operations, we obtain 

 0,  =    -  
dx

d
D a2

2




  (5.16) 

 ,eA  +  eA  =  (x) +x/L
2

-x/L
1  (5.18) 

 .Ae  =  (x) /L|x|  (5.19) 
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Hence, the constant is A = SL/2D and the full solution becomes 

 

 General Interface conditions.  For the specific case of the 

planar source, we can also obtain a pair of general boundary 

conditions that are valid even when the source is not symmetric 

and when the problem does not contain spatial or material 

symmetry.  Recall that the total current is given by the 

expression 

When we subtract the partial currents given by Eq. (5.l4), with a 

source present, we obtain the relationship 

Since S = S+ + S-, this expression states that the total current, 

which is a directed quantity, jumps at the interface by an amount 

equal to the total source strength.  This is obvious in the 

symmetric problem:  the current is equal to S/2 directed to the 

left in region A and changes value to S/2 directed to the right 

in region B as a result of the source of strength S. 

 We obtain the second general boundary condition by adding 

the partial currents, making use of the definitions of J+ and J- 

in terms of the flux.  Adding, one obtains the relationship 

When the source is symmetric, so that S+ = S/2 and S- = S/2, then 

the boundary condition is 

 .e
2D

SL
  =  (x) /L|x|-  (5.21) 

 .|
dx

d
D-  =  J  -  J    (b)J b=x

A
a

A
-

A
+

A


  
 

 .J  =  )S  + S(  +  J
B

-+
A  (5.22) 

 .
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i.e., continuity of flux.  When the source is asymmetric, there 

is a flux discontinuity equal to twice the difference between the 

partial sources in each direction. 

 The discontinuity is a mathematical phenomenon, caused by 

the truncation of the Boltzmann equation to a two-term expansion. 

In actual fact, the diffusion theory solution is not an adequate 

representation of the angular flux distribution near the source, 

at least not within a few mean free paths of the source plane.  

We consider this zone to be a transition region where the 

neutrons must undergo a few collisions before diffusion theory 

can be expected to be valid. 

 

 Infinite Medium Plane Kernel.*  If the source were placed at 

position xo instead of at x = 0, then the solution would be 

translated to the form 

Notice that the diffusion theory solution indicates that the flux 

decreases by a factor of e every L centimeters from the source 

plane.  Thus, L is called the relaxation length or diffusion 

length.  By definition, 

Hence, the diffusion length represents a type of geometrical mean 

between the mean free paths for absorption and scattering. 

 If there were two sources present, having different source 

strengths and locations, then the flux would be a superposition 

of the two solutions because the equations are linear.  Hence, 

for sources at xo and x1, 

 .e
2D

LS
  =  (x) /L|x-x|-o o  (5.24) 

 .
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The extension to a large number of sources is obvious.  As a 

matter of fact, as the sources become a source distribution, 

S(x'), the superposition becomes an integral of the form 

The kernel is called the planar infinite medium Green's function, 

which is defined as 

More will be said about Green's Functions shortly. 

 

 

 5.3 Two Region Planar Problem 

 

 Consider the two-region symmetric source problem shown in 

Figure 5.7.  We need only consider half of the problem since, 

because of symmetry, the solution in the left-half plane will be 

a mirror image of the solution in the right-half plane.  The 

source-free diffusion equation applies in both regions, which is 

written as 

In finite geometry, the solutions can be written conveniently in 

terms of hyperbolic functions, namely, 

 

.dx x)x(G)x S(  = 
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and 

 

 Fig. 5.7  Two Region Problem 

 

 We have four coefficients to be determined:  Al, A2, C1, and 

C2.  We have four boundary conditions, namely:    

      1.  Source condition at x = 0; lim x  0 J
A
(x) = S/2. 

      2.  Flux continuity at the interface;  A(a) =  B(a). 

      3.  Current continuity at the interface; 

      4.  Flux is zero at the extrapolated outer boundary;   

               B(b') = 0, where 

Hence, the solution can be uniquely determined.  Formally, the 

equations are best put into vector-matrix form in order to see 

the general nature of the solution.  Inserting the boundary 

conditions leads to the following set of equations: 
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                                                                      (5.30) 
     

                                                     

This equation is of the form 

whose solution is 

subject to the condition that the determinant of F is not equal 

to zero so that the inverse exists.  The extension to an n-region 

problem is obvious; the formulation is a 2n by 2n matrix problem 

to be solved for 2n coefficients using 2n boundary conditions.  

The detailed, step-by-step solution to the above problem is left 

as an exercise. 

 

 

 5.4 Point and Line Sources 

 

 Point Source in an Infinite Medium.  Suppose we place an 

isotropic point source of strength S neutrons/s at the center of 

an infinite uniform medium and ask for the resulting flux as a 

function of position.  The governing equation is simply 

where, in spherical geometry with azimuthal and polar symmetry, 

the Laplacian operator is written as 

 s = aF   , (5.31) 
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The solution of the above problem is simplified greatly if a 

variable change is introduced of the form   = r .  Computing 

 2 , one obtains 

Likewise, the second term becomes 

 By canceling the factor 1/r, we obtain the simpler equation 

The solution to this equation is simply 

or, in terms of the flux, 

where A and C are coefficients to be determined by applying the 
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 ,Ce  +  Ae  =  (r) +r/L-r/L  (5.36) 
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boundary conditions. 

 There are two boundary conditions:  (1)  the flux must be 

finite as r  ; and (2) the source condition is obtained as  

r  0.  The quantity e
-r/L

/r is finite as r   because the 

exponential term goes to zero.  On the other hand, the factor 

e
+r/L

/r must be evaluated by using L'Hopital's rule to obtain 

Hence, the coefficient C = 0. 

 The source condition is 

which states that the source neutrons give rise to a radial 

current.  Since J(r) = - D d /dr, we obtain 

Hence, the coefficient is 

and the solution is 

Note that this solution is not finite at r = 0. 

 

 Infinite Medium Point Kernel.*  If the source is placed at 

position r

' rather than at r


, one can use the same solution 

provided that the distance from the source to the point at r is 

properly computed.  As shown in Figure 5.8 this involves a vector 

difference  r

- r

'.  For a unit source, the infinite medium point 
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kernel can be written as 

which is a special case of the general infinite medium point 

kernel 

Note that the vector quantities r

 and r


' must be converted to 

the scalar variables r,  , and   before evaluation of the 

kernel can be accomplished. 

 

 Fig. 5.8.  Point Source at r

' 

 

 To illustrate the use of the infinite medium point kernel 

(Green's function), we derive the flux that would be found at a 

distance x from an infinite plane source.  Consider that we have 

a large number of point sources distributed in a plane such that 

the source strength is S = 1 neutron/s-cm
2
.  The flux at x is 

obtained by integrating over the source plane shown in Figure 

5.9.  In this case, the flux is given by the integral 
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 (5.41) 

 .
|r-r|D4

e
 = )r,r

|r-r-|












  (G pt  (5.42) 

 )dr.
D4

e
r(2  =  (x)

/L-

0 







 (5.43) 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

131 

  

 

 Fig. 5.9.  Point Source to Plane Source Conversion Diagram 

 

 To evaluate the integral, we make a variable change from r 

to  .  Since r,  , and x are related by the expression 

we can take the derivative to obtain 

When r = 0,   = x; when r = ,   = .  Hence, the integral 

becomes 

 

But this is in fact the expression for the infinite medium plane 

kernel derived previously, i.e., 

 Infinite Medium Line Kernel.*  In the same fashion, the 

point kernel can be used to obtain a line kernel that can then be 

used to obtain an infinite-cylinder kernel, etc.  Rather than do 
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 .e
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these exercises, we directly derive the line source solution in 

cylindrical geometry having no axial dependence and having 

azimuthal symmetry.  The cylindrical geometry Laplacian is 

written in this case as 

The diffusion equation is simply 

which has a solution of the form 

where A and C are coefficients to be determined by applying the 

boundary conditions. 

 The functions IO and KO are known as modified Bessel 

functions.  These functions have the following specific values: 

Their derivatives obey the expressions 

 

where I1 and K1 are also modified Bessel functions that have the 

specific values 
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These functions are plotted in Figure 5.10. 

 

 Fig. 5.10  Modified Bessel Functions I and K 

 

 We now apply the boundary conditions.  Since the flux must 

be finite as r  , the coefficient A = 0, leaving the solution 

in the form 

If the source emits S neutrons/s-cm, the boundary condition is 

The radial current in cylindrical geometry is 

In the limit of small arguments, the K1 function can be 

approximated as 
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Hence, the source condition leads to 

Solving for the coefficient C, we obtain the flux as a function 

of distance from a line source in the form 

 The corresponding line kernel, when the source is located on 

the axis at r' = 0, is 

This is a simplification of the general line kernel, valid when 

the source is located at distance r' and angle  ' from the 

origin of the coordinate system, namely (see Figure 5.11), 

where 
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 Fig. 5.11 Line Source Located at r',  ' from the Origin 

 

 

 5.5 Solution to the Inhomogeneous Source Problem 

 

 Consider the case of a semi-infinite planar medium 

containing a spatially uniform isotropic source of strength S 

neutrons/cm
3
-s.  The geometrical configuration is shown in Figure 

5.12, where xo is considered to be the extrapolated boundary. 

 

 Fig. 5.12  Spatially Uniform Source in a Diffusing Medium 

 

 The differential equation in this case is the inhomogeneous 

equation 
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Dividing through by D, we obtain the form used previously, with 

the addition of a source component, namely, 

 The homogeneous solution to this problem is simply 

We choose 

which obviously meets the condition when inserted into the 

differential equation. 

 The complete solution is the sum of the homogeneous and 

particular solutions, namely, 

The coefficients A and C are obtained by applying the boundary 

conditions to the complete solution.  Making use of the symmetry 

of the problem, we see that there is no net current crossing the 

symmetry plane at x = 0.  Hence d /dxx=O = 0.  Applying this 

boundary condition to the solution gives 

But since cosh(0) = 1 and sinh(0) = 0, this implies that A = 0, 

leaving the solution 
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dx
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The particular solution can be obtained by the method of undetermined coefficients or by variation of parameters.  In this case, we guess a solution and show that it satisfies the differential equation.   
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The second boundary condition is that the flux must vanish at the 

extrapolated boundary xO.  This gives 

The complete solution can then be written as 

The solution is plotted in Figures 5.13a and 5.13b for small and 

large source regions, respectively. 

 As the medium gets larger, the second term in the brackets 

becomes of less importance near the center of the medium, leading 

to a much flatter flux distribution.  In the limit, as the medium 

becomes infinite, the solution approaches the value 

which simply states that when there is no spatial leakage, the 

local absorption rate  a  just equals the source rate S. 

 

 Fig. 5.13  Flux Distribution in a Finite Slab               

                Containing a Uniform Source 
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 5.6* General Derivation of the Green's Function 

Superposition Integral 

 

 In the general case where the reactor properties and the 

source vary spatially, the diffusion equation must be written in 

the inhomogeneous form 

Since the left-hand side of the equation represents neutron 

losses due to leakage and absorption, we can define a single 

destruction operator L as 

and put the diffusion equation in the form 

 The Green's function is the flux solution to the same 

problem when the source term is replaced by a Dirac delta 

function.  Hence, the Green's function satisfies the equation 

Now, in order to obtain the general superposition integral, we 

follow the procedure given below: 

 

      1. Multiply the flux equation on each side by G( r

, r

') and 

integrate the result over the reactor volume. 

      2. Multiply the Green's function equation on each side by 

 ( r

') and integrate the result over the reactor 

volume. 

      3. Subtract the results of steps (1) and (2). 

      4. Use Green's theorem to eliminate one of the volume 

integrals, thus obtaining the superposition integral. 

 

 ).rS( = )r( + )r a


    (D   -    (5.58) 
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      The result of completing the first three steps is the 

equation 

If the left-hand side of this equation can be shown to be 

identically zero, then the right-hand side will give the 

superposition integral.  The absorption part of the left-hand 

side of the equation has an integrand that is 

and therefore its integral is equal to zero.  The leakage term is 

more complicated and requires Green's theorem, which states that 

for two arbitrary functions  l and  2, 

where n

 is the unit outward normal to the reactor surface.  

Green's theorem is obtained using the divergence theorem and the 

general expression for the derivative of a product of two 

functions.  Specializing the theorem to the present case, we let 

 1 = G and  2 =   to obtain the expression 
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  The integrand of the volume integral on the right-hand side 

of Eq. (5.65) is symmetric and is therefore identically zero.  

Furthermore, the boundary conditions on the (extrapolated) 

reactor surface R

 are generally either 

or the symmetry conditions 

In either case, the surface integral vanishes because of the 

boundary conditions.  Therefore, we have proved that in general 

 

 We are left with the expression 

 

Making use of the fact that the integral of any function times 

the Dirac delta function is simply the integrand evaluated at the 

argument of the delta function, we obtain the Green's 

superposition integral in general form, namely, 

 

The kernel is oftentimes written in a slightly different 

notation, i.e., 

giving the equivalent expression 
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Note that, when the medium is finite or non-uniform, the kernel 

G( r

, r

') is not equal to any of the simple infinite media kernels 

defined previously. 

 

 

 5.7 Diffusion Length 

 

 You will recall that the flux from a point source in an 

infinite media was written in terms of the diffusion length L as 

The actual path traveled by a given neutron is relatively erratic 

as it leaves the source, since the direction of scattering at 

each point occurs in an arbitrary manner.  One such path is shown 

in Figure 5.14, where the open circles represent scattering 

events.  Remember, this is motion in three-dimensional space.  

One may ask the question, what is the mean-squared distance that 

the neutron travels from the point of emission to the point of 

absorption?  Obviously, the mean distance is much less than the 

actual path length. 

 

 Fig. 5.14  Path of a Neutron Emitted from a Point Source 
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 Consider a spherical shell of thickness dr about r.  The 

number of absorptions/s in the shell is equal to 

All neutrons from the source are eventually absorbed in the 

medium.  Therefore, the integral of the absorption rate over all 

space is simply 

which can be verified by direct calculation. 

 The probability that a neutron will be absorbed in the 

spherical shell is simply the ratio of the absorption rate in the 

shell to the total absorption rate over all space, or the 

expression 

This probability is obviously normalized to unity.  Therefore, 

the mean-square distance that a neutron travels before being 

absorbed is computed by taking the absorption-probability-

weighted average of r
2
.  This has the value 

If we insert the appropriate expressions, we obtain 

 The above integral can be evaluated by integrating by parts 

twice, giving the expression,  

 dr. r4 (r)  =  
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This result states that the square of the diffusion length is 

one-sixth of the mean-square distance traveled by a slow neutron 

from its source before being absorbed.  For water, L
2
 = 8.1 cm

2
, 

thus r
2   49 cm2 and a thermal neutron travels about 7 cm before 

being absorbed.  A similar expression for fast neutrons states 

that the age   is one-sixth of the mean-square distance a fast 

neutron travels before reaching thermal energy. 

 

 

 5.8 Critical Reactors 

 

 We next examine the case where no source is present in the 

system but neutrons are produced in the medium as a result of 

fission.  If we were to actually build this system the physical 

parameters chosen would invariably not lead to an exactly 

critical reactor so that we would be dealing with a transient 

problem.  For purposes of calculation, we would like to deal with 

a steady state situation instead.  This fictitious steady state 

is achieved by introducing an extra parameter   into the balance 

equation that converts the problem to a characteristic value or 

eigenvalue problem.  The form of the resulting equation in the 

general case is  

 

 Recall that we have already defined the destruction operator 

L as 

 .L6  =  r
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If we now define a corresponding production operator M as 

then the formulation is the generalized eigenvalue problem 

The object is to find both λ and the corresponding solution for 

the flux,  .  If one notes that L  is the local volumetric 

destruction rate and M  is the local volumetric production rate, 

then integration of both sides of the equation over the reactor 

volume gives a physical interpretation of the eigenvalue k as 

 

where keff is the effective multiplication factor of the system.  

The system will be just exactly critical when keff = 1.0, i.e., 

when production just equals destruction. 

 Since the neutron density is positive everywhere, the flux 

is positive everywhere.  Mathematically, however, the balance 

equation admits an infinite number of harmonic solutions 

corresponding to different allowed values of  .  If one appends 

an index to each of these solutions, then one can show that  O > 

 1 >  2 >... m, where the subscript m corresponds to the number 

of internal zero crossings that the corresponding flux solution 

makes with the axis.  The solutions are called "lambda modes" and 

are pictured in Figure 5.15. 

 ).  +  D   (-    L a  
 

  ,    M f   (5.78) 

 .
M

  =  L



  (5.79) 

 ,k  
raten destructio Total

rate production Total
 = 

dr L

r
eff

reactor

    
d M

  =  reactor 















  (5.80) 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

145 

  

 

 Fig. 5.15  Lambda Mode Flux Solutions 

 

 Roughly speaking, each harmonic corresponds to the flux 

solution in a smaller reactor (that is, the first harmonic is the 

solution obtained for either half of a symmetric system), and the 

value of   is smaller because the smaller system has more 

leakage than the complete reactor.  If the fundamental mode were 

just exactly critical, then each of the harmonic modes would be 

sub-critical and would represent a decaying transient solution in 

a real system.  Therefore, the harmonics are not actually present 

in the steady state.  Nonetheless, harmonics can be excited by 

fixed sources and can be excited in the transient state.  An 

example of the latter case is a xenon-induced spatial power 

oscillation in a large high-power thermal reactor system. 

 For the present, we will only consider the fundamental mode 

solutions in various geometries. 

 

 

 5.9 Homogeneous Bare Critical Slab Reactor 

 

 The eigenvalue formulation for the homogenous bare slab is 

the equation 
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Since -D 2  represents leakage, we examine what the effective 

multiplication factor would be if the slab were infinite in 

extent so that there was no leakage.  We call this multiplication 

factor "k-infinity," and obtain it from the above equation by 

ignoring the leakage term.  The result is 

We rearrange our balance equation using k and the definition of 

the diffusion length, L
2
  D/ a.  Dividing through by D, we 

obtain 

 We define a new term to represent the square-bracketed 

quantity, namely, let 

Our balance equation becomes 

The quantity B
2
 is known as the material buckling.  It is in fact 

the proportionality factor between the local flux and the 

curvature of the flux as represented by the second spatial 

derivative of the flux.  The important thing to note is that B
2
 

can either be a positive or a negative quantity depending upon 

whether or not the ratio k/keff is greater than or less than 

unity.  Since the quantity  -D 2  represents leakage, the 

quantity DB
2  must also represent leakage.  Since   is positive 
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everywhere, a region with a positive value of B
2
 must have a net 

out-leakage and must produce more neutrons than it consumes.  

Furthermore if the diffusion coefficient is a function of 

position, then B
2
 must also vary as a function of position. 

 In the specific case of the bare homogeneous reactor, the 

quantity B
2
 turns out to be a positive constant, as will be seen 

shortly.  Consider a slab of thickness a centimeters as shown in 

Figure 5.16, where a includes the extrapolation distances. 

 

 Fig. 5.16  Bare Slab Reactor 

 

The equation 

has the general solution 

where the coefficients A and C are to be determined from the 

boundary conditions. 

 The boundary conditions are  (0) =  (a) = 0.  Applying the 

boundary condition at x = 0 gives 

 0  =  B  +  
dx

d 2

2
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Therefore, the coefficient C = 0 and the solution becomes 

Applying the second boundary condition at x = a gives 

This equation is satisfied in a non-trivial manner only if the 

geometric buckling is 

The fundamental-mode solution corresponds to n = 1, so that the 

final answer is 

 The coefficient A is arbitrary and corresponds to the 

operating power level.  It can be evaluated by noting that the 

local power is proportional to the fission rate.  Thus, 

where c = 3.1 x l0
10
 fissions/s-watt is a conversion factor.  

Given the total power P, the value of A can be obtained by 

inserting the flux solution into the above equation. 

 Let us return to the definition of B
2
 given by Eq. (5.84) to 

interpret our result in terms of the keff of the system.  Solving 

for keff, we obtain 

Since k is the multiplication factor for an infinite system with 

no leakage and keff is the multiplication factor for a finite 

system, the factor 1/(l + L
2
B
2
) represents a type of non-leakage 
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probability that is denoted by the symbol LT.  Hence, in our 

simple model, 

Putting in the value of B
2
 for the slab, we have the relation 

As the reactor becomes larger, the leakage becomes less 

important.  Also note that the above expression represents a 

design choice.  For a desired value of keff, which may be greater 

than unity to allow for eventual fuel burnup, insertion of 

control rods, poisoning, etc., the relation states that: 

 

     1. given the size a, there is a unique value of the 

material composition k which will produce the desired 

criticality; 

 

     2. given the composition k, there is a unique critical 

size for the system. 

 

 In this particular case, the first-harmonic solution is 

given when n = 2, and is 

The solution is shown in Figure 5.17. 
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 Fig. 5.17  Fundamental and First Harmonic Solutions for a  

Slab Reactor 

 

If the fundamental-mode value of keff were exactly unity, then the 

criticality of the first-harmonic mode would be 

The amount of sub-criticality of the first harmonic decreases as 

the reactor becomes larger relative to the magnitude of the 

diffusion length! 

 

 

 5.10 Two Region Slab Reactor 

 

 Consider the case where the fuel region is surrounded by an 

infinitely large water region (reflector) on either side, as 

shown in Figure 5.18.  We use the subscripts c for core and R for 

water.  Note that since there is no fuel in the water region, its 

value of buckling is indeed negative and there is a net in-
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leakage into the water to supply the neutrons that are absorbed 

there.   

 

 

 Fig. 5.18  Reflected Slab Reactor 

 

The governing equations are 

and 

 The general solutions are 

and 
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respectively, where Ac, Cc, AR, and CR are coefficients to be 

determined.  We have four boundary conditions, namely: 

 

 

 

Let us put these conditions into the vector-matrix format used 

previously.  The result is  

 

 

                                                          (5.99) 
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Obviously, Ac and CR are both zero, so that the order of the 

system can be reduced.  Contrary to the case where a source was 

present, this is the homogeneous equation 

A nontrivial solution exists only when the determinant of H  is 

identically zero.  Setting H  = 0 gives the following 

transcendental equation, which can be solved for the critical 

value of Bc
2
: 

We note that the transcendental equation also permits multiple 

solutions for the value of Bc
2
, as can be seen by plotting the 

tangent function vs. Bc, as in Figure 5.19, and looking for the 

intersection with the right-hand side of the equation.  The 

smallest value of Bc corresponds to the fundamental mode.  Again, 

given the desired keff and the size a, we obtain the corresponding 

kc needed in the fuel region.  Alternately, given kc, we find 

the dimension a for a desired keff. 

 

 Fig. 5.19  Plot of Eq. (5.101) vs. B 
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 5.11  One-Dimensional Bare Homogeneous Cylindrical Reactor 

 

 In cylindrical geometry, the Laplacian operator is 

Consider a bare cylindrical reactor with extrapolated radius RO 

as shown in Figure 5.20.  The reactor equation becomes 

which is recognized to be Bessel's equation of order 0. 

 The general solution is of the form 

where A and C are coefficients to be determined, and JO and YO 

are Bessel functions of the first kind.  The derivatives obey the 

relations 

 

 Fig. 5.20  Bare Homogeneous Cylindrical Reactor 
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 (Br),CY  +  (Br)AJ  =  (r) 00  (5.103) 

 (x).Y-  =  (x))Y(
dx

d
     and     (x)J-  =  (x))J(

dx
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Specific values of interest are the following: 

 

                         JO(0) = 1; 

                         J1(0) = 0; 

                         YO(0) = - ; 

                         Y1(0) = - . 

These functions all behave like damped sinusoids, as seen in 

Figure 5.21. 
                      
 

 

 Fig. 5.21  Bessel Functions J and Y of Orders 0 and 1 

 

 The boundary conditions for the cylindrical reactor are the 

following: 

 

(1) at r = 0,     0  =  |
dr

d
=0r


; the flux is symmetric and finite. 

                    

 

(2) at r = R0,     (R0) = 0; the flux vanishes at the extrapolated 
boundary. 
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The first boundary condition gives 

Putting in values, 

Therefore, C = 0, and the solution becomes 

Application of the second boundary condition gives 

This equation is satisfied only at the zeros of the JO function, 

the first few of which are listed in Table 5.1. 

   

 Table 5.1 

  Zeros of the JO Bessel Function 

        

_____________________________________________________________________________ 

                                                                        

           JO function zero      Value of argument       Value of B  

                                                                        

                 1                      2.405              2.405/RO  

                 2                      5.520             etc.       
                 3                      8.654                      

                 4                     11.792                           

                 5                     14.931                           

                                                                              

 _____________________________________________________________________________ 
 

Therefore, the final solution is 

where the coefficient A corresponds to the power level of the 

reactor. 

 

 (0).BCY  -  (0)BAJ -  =  0  =  |
dr

d
11=0r


 

 

 ). BC(-  -  BA(0)  =  0   
 

 (Br).AJ  =  (r) 0  (5.104) 

 ).BR(AJ  =  0  =  )R( 000  
 

 ,
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2.405r
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 5.12  Bare Homogeneous Spherical Reactor 

 

   In spherical geometry, the Laplacian operator is 

Consider a bare spherical reactor with extrapolated radius RO as 

shown in Figure 5.22.  The reactor equation can therefore be 

written as  

 

 Fig. 5.22  Bare Homogeneous Spherical Reactor 

 

Using the variable change   = r , as done previously, this 

equation can be converted to the form 

which has the solution 
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 (5.107) 

 Br.  C  +  Br  A  =  (r) cossin  (5.108) 
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Hence, substituting back, the flux solution is 

where A and C are coefficients to be determined using the 

boundary conditions. 

 Specific values of these functions that are of special 

interest are the following: 

These functions, known as spherical Bessel functions, also behave 

like damped sinusoids.  Their plots are similar to those obtained 

for the JO and YO Bessel functions shown previously, as seen in 

Figure 5.23, where the following definitions have been used: 

 

The boundary conditions for the spherical reactor are the 

following: 

 (1) at r = 0,  0  =  |
dr

d
=0r


;  the flux is symmetric and finite.      
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 (2) at r = R0,     (R0) = 0;  the flux vanishes at the  

extrapolated boundary. 

 

 

 

 Fig. 5.23  Spherical Bessel Functions 

 
  
 The first boundary condition gives 

Application of the second boundary condition gives 

Therefore, C = 0 and the solution becomes 
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This equation is satisfied only when B = n /R0, n = 1,2,.... 

 Therefore, the complete solution for the fundamental mode of 

the bare spherical reactor is 

where the coefficient A again corresponds to the operating power 

level of the reactor. 

 

 

 5.13  Comments on Multiregion One-Dimensional Reactors 

 

 Extending the ideas already presented, we solve the problem 

of multi-region reactors by using the following series of steps: 

 

 1. determine whether B
2
 is positive or negative in each 

homogeneous region; 

 2. assume the correct type of general solution for the 

given geometry corresponding to the sign of the 

buckling term; 

 3. apply one boundary condition at each outer boundary (or 

at the center, if symmetry is present) and two boundary 

conditions of continuity at each interior interface; 

 4. put the resulting set of equations in vector-matrix 

form, with the coefficients in the vector; 

 5. set the determinant of the matrix equal to zero to 

obtain the transcendental critical equation; 

 6. solve for either the critical k in one region or the 

critical size of one of the dimensions, given the other 

parameters and the desired keff value; 

 .
r

Br  A
  =  (r)

sin
  (5.110) 

 ,
r

)Rr/( A
  =  (r) 0


sin

 (5.111) 
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 7. solve for all but one of the coefficients in terms of 

the last coefficient, which is arbitrary; 

8. find the arbitrary normalization constant by setting 

the operating power level equal to the integral of the 

fission rate over the volume of the reactor. 

 

 As an example of the above procedure, consider the case of 

an infinitely long cylindrical reactor composed of an inner 

region with a k1 = 0.95 and an outer region with a k2 = 1.05.  

Assuming that the outer extrapolated radius is fixed at r = R0, 

we seek to locate the position of the inner boundary between 

regions, r = rb, such that the reactor is critical with  

keff = 1.000.  The situation is depicted in Figure 5.24. 

 

 Fig. 5.24  Two Region Critical Cylindrical Reactor 

 

 As a first step, we calculate B
2
 for each region.  For 

region 1, 
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For region 2, 

For a one-dimensional cylindrical system the diffusion equation 

for each region is of the form 

Hence, the appropriate solution forms are 

and 

 Now, there are a total of five unknowns for this problem, 

namely, Al, Cl, A2, C2, and rb.  There are only four boundary 

conditions, hence one of the coefficients will be arbitrary.  The 

boundary conditions are the following: 

 

 (1) at r = 0,  1(0) is finite and symmetric, so that 

d 1/drr=0 = 0; 

  (2) and (3), at r = rb, we have continuity of flux and 

current so that 

 (4) at r = RO, the flux vanishes at the extrapolated 

boundary so that 

 . -  =  
L

0.05
-  =  

L

1  -  k/k
  =  B

2
12

1
2
1

eff12
1 







 
 

 

 .
L

0.05
 +  =  

L

 1  -  k/k
  =  B 2

2
2
2

eff22
2 







 
 

 

 0.  =  B  +  
r

r
rr

1 2

















 

 

 r)(KC  +  r)(IA  =  (r) 1011011   (5.112) 

 r).B(YC  +  r)B(JA  =  (r) 2022022  (5.113) 

 ; |
dr

d
D-  =  |

dr

d
D-  and   )r(  =  )r(

r=r

2
2r=r

1
1b2b1 bb


  

 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

163 

  

 The condition of symmetry at the center of the core requires 

that the coefficient Cl = 0.  Hence, the solution in the center 

reduces to 

We put the remaining boundary condition equations into vector-

matrix form.  These are the following: 
 

 
                                                                     (5.115)  

By setting the determinant of the coefficient matrix equal to 

zero, we obtain a transcendental equation to be solved for the 

critical radius rb.  This is of the form 
 

 

     J0(B2R0){I0( 1rb)D2B2Y1(B2rb) + (Y0(B2rb) D1 1I1( 1rb)} 
  
         = Y0(B2R0){I0( 1rb)D2B2J1(B2rb) + J0(B2rb) D1 1I1( 1rb)}.    
                                                      
                                                          (5.ll6) 

 

The critical equation can most easily be solved graphically by 

plotting both the right- and left-hand sides as a function of the 

radius rb on the same graph.  The intersection of the curves at 

the smallest value of rb is the critical radius. 

 Next, we solve for all but one of the coefficients in terms 

of one arbitrary coefficient, e.g., A1.  This is a simple process 

of algebraic elimination.  The coefficient values so derived can 

be placed into the expressions for  1(r) and  2(r), which then 

contain only the single coefficient Al. 

 Finally, we can find Al by integrating the fission rate over 

 0.  = )R( 02  
 

 r).(IA  =  (r) 1011   (5.114) 
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the volume of the core and then setting the result equal to the 

total core power.  For this particular case, the result is of the 

form 

where  fl and  f2 are the macroscopic fission cross sections in 

regions 1 and 2, respectively, and  l and  2 are dependent upon 

Al. 

 The flux solution and corresponding power distribution are 

plotted in Figure 5.25.  Notice that the power distribution is 

discontinuous because of the change of  f at the interface. 

 

 

 Fig. 5.25 Flux and Power vs. Position in a Two Region 

Cylindrical Reactor 

 

 

 5.14 Multidimensional Reactors 

 

 As an example of a two-dimensional reactor system, we 

examine the bare, homogeneous, finite cylindrical reactor.  In 

the general case, the directions r and z are not separable, which 

can be justified on physical grounds, but we assume separability 

here in order to examine the general form of the solution.  In 
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cylindrical geometry with azimuthal symmetry, the Laplacian is 

Hence, our diffusion equation becomes 

Assume a separable solution of the form 

Insertion of this solution into the diffusion equation and 

division by RZ gives the separated equation 

Since R and Z are both independent, each of the bracketed terms 

must be a constant.  We do not know the signs of the constants, 

but physically, since we do know that neutrons will leak out of 

the system in all directions, we guess that both will be negative 

corresponding to out-leakage.  This assumption is subject to 

examination in terms of the ability of the separated solutions to 

meet the boundary conditions of the problem.  The buckling 

equation with the above assumption becomes 

The separated differential equations become 

and 

 .
z

  +  
r

r
rr

1
   

2

2
2




















  

 

 0.  =  B  +  
z

  +  
r

r
rr

1 2

2

2























 (5.118) 

 R(r)Z(z). = z)(r,  (5.119) 
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 0.  =  B  +    -  - 222   (5.121) 
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 The boundary conditions are the following: 

 

 (1) R(RO) = 0, flux vanishes at the extrapolated boundary; 

    (2) dR/drr=0 = 0, symmetry at the reactor centerline; 

    (3) Z(ZO/2) = 0, flux vanishes at the extrapolated 

boundary; 

    (4) dZ/dzz=0 = 0, symmetry. 

 

The second boundary condition excludes the YO function, while the 

fourth excludes the sine function.  Therefore, the final solution 

is of the form 

 Since only the fundamental mode is present in a critical 

steady state reactor, the first boundary condition gives 

while the third gives 

The complete solution is therefore 

The critical buckling, based upon both core geometry and material 

composition, then satisfies the expression 
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Hence, the critical composition k can be obtained for fixed 

dimensions, or one of the dimensions can be obtained if the 

material composition and the other dimension are fixed, once a 

desired value of keff is chosen. 

 As before, the arbitrary constant A is determined from the 

desired power level by integration.  In this case, 

 Other Geometries.  Similar solutions can be obtained in 

other geometries, such as R , XY, XYZ, R  , etc. by 

appropriate specification of the Laplacian operator.  Analytic 

solutions are usually only practical for a small number of 

dimensions or regions, since the algebra becomes unwieldy as the 

problem size increases.  On the other hand, for a large number of 

small regions in a reactor, the solution may be approximately 

separable over each separate region, making analytic solutions to 

complicated problems feasible.  A computer-based method of 

solution functions, which is a forerunner of the so-called 

"coarse-mesh" methods, has been developed by Bobone; the 

appropriate matching of solutions at interfaces and boundaries is 

handled automatically.  In the usual case, however, the finite 

difference analog of the multi-region diffusion equation is 

solved numerically in an iterative fashion by computer. 

 

 Effect of a Reflector.  If one puts a reflector material on 

the outside of a fuel region, the flux at the interface is 

increased over the value present without the reflector.  This 

increases the fission rate near the interface with the net result 

that a smaller central core is necessary to achieve criticality. 
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 This effect is known as "reflector savings."  Unfortunately, the 

concept does not include the moderating effect of the reflector, 

which is also significant, and therefore an analytical treatment 

will not be presented here. 

 

 

 5.15*  Diffusion Length Experiment 

 

 Recall that the flux distribution in a semi-infinite slab 

containing a planar source varies with distance as  

 (x) = (SL/2D)e-x/L.  This solution, when plotted on semi-

logarithmic paper, is a straight line whose slope is equal to  

-1/L.  Hence, a possible method of measuring L is to perform a 

source experiment and measure a quantity that is proportional to 

the local flux, such as the saturation activity of an indium 

foil. 

 Obviously, it is impossible to obtain a semi-infinite 

medium, but it is possible to approximate such a medium and 

correct for the effects of finite size.  This experiment is 

called a Sigma Pile.  One possible configuration is a rectangular 

parallelepiped, made of pure material such as graphite, which is 

placed on top of an essentially uniform planar source such as a 

small portion of a reactor.  The experiment is shown in Figure 

5.26. 

 The diffusion equation in rectangular geometry is 

We seek a solution by the process of separation of variables of 

the form 
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 Fig. 5.26  Sigma Pile Experiment 

 

When the assumed solution is substituted into the diffusion 

equation, the resulting separated expression is 

Each of the bracketed terms must be a constant in order to 

satisfy this equation. 

 Since the buckling of the system is negative, the total 

system has a net in-leakage.  We examine the situation in each of 

the coordinate directions separately using physical reasoning.  

In both the x and y directions there are no sources but there is 

a leakage loss of neutrons across the outer surfaces.  Net out-

leakage implies that the buckling in each of these directions 

must be positive and the coefficients negative.  On the contrary, 

in the z direction, neutrons enter from the source and leak out 

of the top surface; the source must supply this leakage, plus 
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absorption in the medium and also the leakage out of the x and y 

directions.  This implies a net in-leakage in the z direction so 

that the buckling is negative and the coefficient is positive.  

Since X, Y and Z are independent of one another, each of the 

terms of the separated equation must be equal to a constant whose 

sign has been determined above.  The separated buckling equation 

becomes 

which gives the three separate differential equations 

and 

We need a total of six boundary conditions.  These are the 

following: 

 

 (1) X(a/2) = 0, flux vanishes at the extrapolated boundary; 

 (2) dX/dxx=0 = 0, symmetry about the centerline of the 

pile; 

 (3) Y(a/2) = 0, flux vanishes at the extrapolated boundary; 

 (4) dY/dyy=0 = 0, symmetry about the centerline of the 

pile; 

 (5) Z(c) = 0, flux vanishes at the extrapolated boundary; 

 (6) -D dZ/dzz=0 = S, source condition. 

 

Boundary conditions (2) and (4) imply that only cosine solutions 
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are present in the x and y directions.  Boundary conditions (1) 

and (3) imply that solutions exist only for specific values of   

and  , namely, 

and 

 dd.1,3,5,...o  =  n  ,
a

n
  =  


  

 All such even harmonics can be excited by the symmetric 

source, and can be present in the steady state.  Hence, the 

constant   must also be multi-valued and must obey the buckling 

equation 

The complete solution must therefore be of the form 

where the function Z is determined from the differential equation 

Application of boundary condition (5) leads to the form 

and application of the source condition (6) leads to appropriate 

values for the constants Amn, which will not be obtained here. 

 Experimentally, one puts activation foils at various 

positions along the z axis at a specific (x,y) location such as  

x = 0 and y = 0.  The approximate activation distribution for a 

long parallelepiped at a position not too near the outer surface 

 dd1,3,5,...o  =  m  ,
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 z),-(c  A  =  (z)Z mnmnmn sinh  (5.138) 
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is the exponential sum 

where Cll, Cl3,... are coefficients that correspond to All, etc. 

 Since  l3 and  3l are larger than  ll, these exponentials 

decay more rapidly with distance from the source plane.  

Therefore, not too near the source or the outer boundary the 

distribution is approximately  

The slope of the activation vs. distance curve is approximately  

- ll, which allows us to obtain an estimate of 1/L
2
 from the 

buckling equation with m = n = 1.  Typical experimental results 

are sketched in Figure 5.27. 

 

 

 Fig. 5.27 Sigma (Exponential) Pile Data 

 

 Two important points emerge from the foregoing analysis.  

First, under certain circumstances it is possible to obtain 

positive B
2
 type solutions (convex) for problems that are 
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inherently of a negative B
2
 (concave) type. Second, harmonic flux 

solutions can be excited by suitable placement of neutron 

sources, and by analogy, placement of neutron sinks. 

 

 

 Problems 

 

5.1 Find the detailed flux solution for a point source of 

strength S neutrons/s located at the center of a sphere of 

radius R.  The sphere is surrounded by a vacuum. 

 

5.2 Complete the solution to the two region planar source 

problem described in Section 5.3. 

 

5.3* Consider an infinite medium containing two infinite source 

planes which emit neutrons isotropically and which are 

located perpendicular to the x axis a distance of b 

centimeters apart. 

 

  a) If one of the sources is twice the strength of the 

other, calculate the flux distribution in the 

medium in terms of its diffusion coefficient D and 

its macroscopic absorption cross section  a. 

b) If all of the material in the left-hand plane  

(x < 0) is replaced with material that has a 

diffusion constant which is four times the value 

in the right-half plane, calculate the flux 
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distribution. 

  c) Sketch the results of parts a and b. 

 

5.4 A neutron current from a reactor is normally incident on a 

50-cm slab of graphite.  This current can be considered to 

be the partial current J+(0).  For graphite, use D = 0.84 cm 

and  a = 2. x 10
-4
 cm

-l
. 

  a) Find the fraction of neutrons reflected by the 

slab, defined as J-(0)/J+(0); 

  b) Find the fraction of neutrons transmitted through 

the slab, defined as J+(50)/J+(0). 

 

5.5* The albedo, or reflection coefficient, of a scattering 

medium is defined as 

     when the reflecting medium is located to the right of the 

source-containing medium.  The albedo is used as a boundary 

condition to calculate the flux distribution in the source-

containing region.  In a similar manner, a quantity known as 

the blackness or absorption coefficient can be defined for 

an absorber region as 

    Consider an infinite medium with a spatially uniform unit 

source of thermal neutrons and constants D and  a, 

containing a small sphere of radius R and known blackness α 

(the fraction of incident current which is absorbed when the 

sphere is surrounded by vacuum). 

      a) Evaluate the flux outside the sphere as a function 

of L
2
 = D/ a, R and  , and find the rate at which 
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neutrons are absorbed. 

  b) Discuss the behavior of these results as the 

radius R approaches zero.  In the limit, does 

taking   = 1 make any difference? 

  c) Suppose there is no source in the medium, but that 

instead the sphere produces neutrons at the rate 

of S = 1/s.  Find the flux distribution in 

general, and in the limit as R  0. 

  d) Without detailed calculation, discuss the 

corresponding results for both an infinite plane 

and a line source and then sink of neutrons. 

  e) What conclusions can you draw as to the 

appropriateness of using a point, line and plane 

as idealized neutron sources on the one hand, and 

as idealized sinks on the other? 

 

5.6 We wish to compute a realistic neutron flux distribution in 

the vicinity of a plane neutron source located at x = 0 next 

to an infinite medium.  This is an example of a medical 

physics application where the source is a beam from a 

reactor and the medium is a human patient. 

 

We assume that the fast neutrons from the source are 

attenuated exponentially as they enter the medium and only 

enter the thermal flux distribution after a scattering 
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event.  Hence, the form of the source distribution is: 

    a) What is the total source strength SO? 

  b) What is the particular solution to the diffusion 

equation? 

      Hint:  Assume that the particular solution is 

proportional to the source. 

  c) What are the boundary conditions? 

  d) What is the complete solution for the flux? 

 

5.7* Consider a long cylindrical cell, which is one of many in a 

reactor.  The cell consists of an outer region of radius RO 

containing water, and an inner region of radius Ri, which 

for our purposes contains a strong neutron absorber.  Assume 

that there is a spatially uniform neutron source of S 

neutrons/cm
3
-s in the water region only and none in the 

absorber region.  Assume further that there is no net 

current crossing the outer boundary of the cell, and that 

the cell is very long compared to its diameter. 

 

     a) If one-speed diffusion theory is considered to be 

 .e  =  S(x) x-

T

s T
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applicable to this problem, obtain an expression 

for the neutron flux  (r) as a function of 

distance from the center of the cell. 

  b) Sketch the flux solution as a function of r. 

  c) Discuss the adequacy of using diffusion theory to 

solve this problem. 

  d) If you want to homogenize the material properties 

of this cell into an equivalent uniform cell, what 

would be a reasonable way to proceed if you knew 

the original number densities in each region? 

 

5.8  Consider a slab-type reactor cell in a regular array, as   

shown below. 

 

 

 Consider that neutron slowing down occurs only in the 

moderator and that to a first approximation this acts as a 

spatially uniform source Q feeding the thermal flux group in 

the moderator region.  There is no slowing down source in 

the fuel region.  If one-speed diffusion theory is 

considered to be accurate for this problem, do the 

following: 

 

  a) Sketch the thermal flux distribution in this 

array. 

  b) Calculate the thermal flux distribution in a 

typical cell in this array. 

  c) Calculate the disadvantage factor for this cell, 

defined as 
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  d) If you wanted to homogenize the fuel and moderator 

into a single equivalent region, how would you do 

it?  Explain. 

 

5.9* There is always a non-zero neutron population in reactors 

containing U-233, U-235, U-238, or Pu-239, even when the 

reactor is shut down, which is due to spontaneous fission.  

U-238 shows the greatest specific rate of spontaneous 

fission, i.e., it has the shortest half-life for spontaneous 

fission of those listed. Consider a homogeneous sub-critical 

bare slab of thickness 2a containing only a slightly 

absorbing moderator and U-238.  The spontaneous fission of 

the U-238 represents a volumetric neutron source of strength 

S neutrons/cm
3
-s.  Assume that the fission neutrons are 

thermalized at their point of birth, i.e., ignore fast 

leakage and ignore any fission that might occur in U-238 

from the absorption of fast neutrons from spontaneous 

fission.  For both parts employ boundary conditions of zero 

flux at the slab surfaces. 

  a) Show that the Green's function for the one group 

thermal diffusion operator for the slab is given 

by 

   where   = 1/L. 

   (Hint:  Take the zero of the coordinate system at 

the center of the slab and initially work with 
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exponentials rather than hyperbolic functions.) 

  b) Use the Green's function to calculate the thermal 

flux resulting from the spontaneous fission 

source. 

 

5.10 Consider the two-region cylindrical reactor shown below, 

whose height is effectively infinite.  Assume that one-group 

diffusion theory is adequate to represent the reactor. 

 

 You are given the following information for the two regions: 

 

          Property                 Region l                Region 2 

 

    Radius (cm)                       R                        2R 

    k-infinity                       0.98                      ? 

    Diffusion constant (cm)           D                        1.1D 

    Absorption cross section (cm
-l
)    a                       1.1 a 

    Prompt neutrons per fission                                   

    Extrapolation distance            -                      negligible 

 

  a) If it is desired that the reactor be exactly 

critical with keff = 1.0, derive expressions which 

give the amount of fuel to be loaded into Region 2 

in terms of the required macroscopic fission cross 

section  f.  You need not do all of the algebra, 
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but must indicate the method of solution of your 

equations. 

  b) Sketch the flux shape in the core as a function of 

position. 

  c) Sketch the power profile in the core as a function 

of position. 

  d) If the vacuum region were replaced with water, 

what would be the effect on the system?  Do you 

think that one-group diffusion theory would still 

be adequate?  Explain. 

 

5.11 Consider the following symmetric, three region, 

     1-dimensional slab reactor. 

 

 

 The value of the distance a is not specified as yet, but the 

extrapolated outer radius is x = ± b and the properties of 

the three regions are: 

 All three regions have the same value of L
2
. 

  a) Set up the solution to the flux distribution 

problem (you need not do all of the algebra) if 

the value of keff which is desired is keff = 1.15. 

  b) Set up the solution to the problem if the desired 

keff = 1.00. 

  c) Sketch qualitatively the flux distributions 

obtained in parts a and b. 

 

 0.  =  k[C]     1.25;  =  k[B]     1.05;  =  k[A] CBA   
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5.12 You are given a bare slab reactor of half-width l, 

describable by one-group diffusion theory.  Consider that 

the material properties are D,  a and   f.  The flux at 

each outer boundary extrapolates linearly to zero at a 

distance XL from the surface.    

  a)  Find the critical (keff = 1) flux solution in this 

core. 

  b) What is the value of the flux at the surface 

relative to that in the center?   

  c)  What is the leakage per unit surface area from the 

core? 

 

 

References 

 

S. Glasstone and M. C. Edlund, The Elements of Nuclear Reactor   

     Theory, (D. Van Nostrand, Princeton, NJ l952), Chapter 5. 

M. Abramowitz and I. A. Stegun, Handbook of Mathematical 

Functions, NBS Applied Mathematics Series, (USGPO, 

Washington, D.C., l964). 

R. Bobone, "The Method of Solution Functions:  A Computer-

Oriented Solution of Boundary Value Problems as Applied to 

Nuclear Reactors," Nucl. Sci. Eng., 29, (l967) 337. 

 

 

 

 

 

 

 

 

 

 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

182 

  

 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

183 

  

CHAPTER 6 
 

 

FEW-GROUP EQUATIONS AND  

NUMERICAL SOLUTION METHODS 
 
 

 In Chapter 5 we examined in some detail the analytic 

solutions to both the one-speed source problem and the critical 

reactor problem.  We now consider a more realistic and practical 

treatment that includes energy-dependent effects for a system 

composed of many spatial regions. 

 To this end the treatment starts with a description of the 

static energy-dependent neutron balance equation.  This equation 

is first discretized into the standard few-group diffusion theory 

equations; these equations are then converted to a finite 

difference form for one-dimensional geometries.  At this point, 

the spatial flux solution can be obtained iteratively; simple 

proofs of convergence are given.  Finally, the one-speed and two-

group solutions are compared. 

 

 

 6.1 Energy-Dependent Diffusion Equation 

 

 Recall that the one-speed transport equation contained two 

different physical deficiencies: namely, that (1) no energy was 

transferred in a scattering collision; and (2) all fission 

neutrons were born at a single energy.  We know that in a thermal 

reactor, the majority of absorption reactions occur at an energy 

that is a fraction of an electron volt, while all fission 

neutrons appear at energies of the order of a million electron 

volts.  The fast neutrons moderate down to thermal energies by 

virtue of the energy transferred in scattering collisions.  



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

184 

  

Hence, these features must be included in the balance equations 

if realistic computational results are to be achieved. 

 In order to include the energy dependence in our 

calculations, we now must consider the neutron balance in dE 

about E, as well as the balance in d  about 

 and in dr about 

r

. In the case of the fission term, we must integrate the 

fission rate over all energies and angles to obtain the total 

number of fission reactions, and then distribute those fission 

neutrons isotropically according to the spectrum distribution 

(E).  In the case of the inscattering term, we must consider 

neutrons of any energy E' and angle 

’ that can enter the energy 

E at angle 

, which means that this term contains an integral 

over E' as well as over 

’.  The angular energy-dependent flux 

is written as 

 The energy-dependent, steady state Boltzmann transport 

equation can be written as follows, when fission is isotropic: 

The in-scattering term is not really as formidable as it seems at 
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first, because the amount of energy transfer and the angular 

direction change that occur in a scattering collision are 

uniquely related to one another by the conservation laws. One of 

the integrations over angle which is necessary in deriving the Pn 

equations becomes trivial and leads to a scattering transfer 

cross section of the form sn( r

,E'  E), for order  

n = 0,1,2,.... 

 The energy-dependent diffusion equation can be derived from 

the transport equation in the same manner as the one-speed 

diffusion equation was derived.  The result is simply 

 

where the energy-dependent flux is ( r

,E) neutrons/cm

2
-s-eV.  

The in-scattering integral is actually fairly complicated to 

evaluate because the energy transfer for scattering species 

having a mass of A > 1 is a discontinuous process.  This subject 

will be treated in detail in the section on neutron slowing down 

theory in Chapter 11. 

 

 

 6.2  Few-Group Diffusion Equations 

 

 Assuming that we know all of the material properties of the 

 

,dE' )E,r()E,r((E) +
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system, the few-group equations can be obtained for each 

homogeneous region of the reactor by discretizing the energy-

dependent diffusion equation over energy.  One chooses important 

energy intervals called groups and simply averages the balance 

equation over each of these energy regions to obtain a set of 

few-group equations that approximates the basic features of the 

original energy-dependent equation.  The energy groups are 

numbered from g = 1 for the highest energy, to g = G for the 

lowest energy.  For thermal reactors one often takes G = 3, where 

group 1 is usually chosen to include the entire fission spectrum 

region (say from Emax = 10 MeV down to 100 keV), group 2 is chosen 

to include the slowing down and resonance region (say 100 keV 

down to 0.6 eV), and group 3 is chosen to include the 

thermalization region (say from 0.6 eV down to 0).  More groups 

are chosen if other important energy-dependent features must be 

described with accuracy.  For example, a three-group structure is 

shown in Figure 6.1. 

 

 Fig. 6.1  Few Group Energy Structure 

 

 In order to obtain the few-group equations, the following 

steps are required: 

 

 1. Express all integrals over the full energy range as the 

sum of integrals over the groups.  This is done for 

both the in-scatter and fission terms; 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

187 

  

2. Integrate the energy-dependent diffusion equation over 

group g, term by term.  Do this separately for  

 g = 1, G; 

 3. Replace each of the resulting integrals with the 

product of the average group flux and the average group 

cross section. 

 

The equation for the gth group becomes the following for each 

homogeneous spatial region in the reactor: 

Note that the in-scattering term contains a double integral 

because the scattering transfer cross section is a function of 

the two variables E and E', whereas the fission term contains the 

product of two single integrals. 

 In order to simplify the equations further, we must make a 

number of definitions of average quantities.  Let the group flux 

be given by the expression 

The group flux has units of (neutrons/cm
2
-s), whereas the energy-

dependent flux has units of (neutrons/cm
2
-s-eV).  Furthermore, 

let the following cross-section averages be defined, where the 

spatial dependence is implied: 
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Finally, let the source and group spectra be defined as 

and 

 It should be noted that proper averages for the group cross 

sections can only be obtained if a detailed energy spectrum, 

appropriate to the problem at hand, is available beforehand for 

use in the averaging process.  This implies that fine-mesh, zero-

dimensional calculations must be done first for each different 

material region in the reactor in order to obtain an acceptable 

weighting function.  It also implies that a few-group library 

suitable for thermal reactor calculations would not be usable for 

fast reactor calculations, and vice versa. 

 When the group averages are inserted, the equation for the 

gth energy group becomes simply 
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Note that, by definition 

Therefore, the within-group scattering term, sg g, appears on 

both sides of Eq. (6.7) and cancels out in agreement with the 

one-speed situation.  In the few-group structure pictured in 

Figure 6.1, where G = 3, the scattering includes down-scatter 

only because neutrons always lose energy in scattering 

collisions.  This implies that 

Neutrons that scatter out of one group reappear in a lower energy 

group.  Hence, the three-group equations can be written 

explicitly as 

and 

 

 The few-group equations can be put into a very compact form 
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by introducing vectors and matrices.  One makes the following 

definitions to put the equations in a commonly used notation: For 

G = 3, 

 

 .

D

0

0

    

0

D

0

    

0

0

D

    D   ,

   

0  

0  

-

)+(

0

      

-

-

)++(

    H

3

2

1

a33s2

3s2a2

3s1

2s1

3s12s1a1

 

 

 The diagonal terms in the H  matrix are often referred to as 

the removal cross sections, rg.  With the above definitions, 

the few-group equations for each homogeneous spatial region in 

the reactor reduce to the relatively simple vector-matrix form 

which must be solved subject to the appropriate boundary 

conditions at each internal interface and each external boundary. 

 Leakage in directions not included in the spatial 

calculation is specified externally by supplying a group-

dependent buckling term B
2
g .  Since leakage is proportional to 

g

2
gg BD , the product BD

2
gg  acts like a fictitious macroscopic 

absorption cross section that can be added to the regular ag term 

to increase the effective losses in the system.  Note that we 

allow the value of B
2
g  to be either positive or negative so that 

in-leakage as well as out-leakage can be treated separately in each 
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energy group.  These values can be included in the H  matrix. 

 In the specific case where out-scattering goes only to the 

next lowest group, the scattering transfer terms can be 

designated by the letter E and the absorption terms can be 

designated by the letter A, where both are vectors of length G. 

This leads to the commonly used DEAF B
2
 notation for specifying 

few-group reactor properties, which is often seen in the 

literature. 

 

 

 6.3  Finite Difference Few-Group Equations in One Dimension 

 

 We have derived the multi-group form of the diffusion 

equation.  Unfortunately, it is still a second-order partial 

differential equation in space that must be solved by applying 

suitable boundary conditions.  For the most part analytic 

solutions are not feasible, so we turn to an approximate method 

called Finite Difference. 

 For relatively small problems, we may consider solving for 

all of the group fluxes simultaneously.  However, for most 

practical-sized problems, we actually solve for the flux in one 

group at a time, starting with the fastest group and working 

down.  The solution is usually iterative, because we need to know 

some information about the fluxes in the lower groups in order to 

properly include the fission contribution.  What is normally done 

is to construct an effective group source that contains the 

actual source, plus fission, plus down-scattering from the groups 

above.  The equation that we use is the one-group form, 

When the problem is further restricted to be one dimensional, 

 

     S.=           +     D  -

 

  sourceeffective     removal    leakage

r
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then the equation we treat is 

where the one-dimensional Laplacian has been written out 

explicitly.  By appropriately choosing the integer k we can solve 

the following problems: 

 

                  k = 0;   slab 

                  k = 1;   cylinder, 

                  k = 2;   sphere. 

 

 Edge-Centered Method.  There are a variety of ways to 

convert the above equation to finite difference form.  The method 

illustrated here for k = 0 is called "mesh box integration."  

Consider the spatial diagram shown in Figure 6.2 for an interior 

set of mesh points, where the index m represents the mth mesh 

point, hm represents the mesh spacing between points m and m - 1, 

and Dm and m represent the material properties in the region 

between m and m - 1.  For convenience we assume that the material 

properties are different in the region between mesh points m and 

m + 1 so that we have an interface between regions.  By allowing 

material property changes at each mesh point the formulation 

becomes extremely flexible.  The present form is called an "edge-

centered" method because the fluxes are calculated on the region 

interfaces.  This is in contrast to a "mesh-centered" method 

where the fluxes are calculated in the centers of the regions.  

We will come back to this point later. 

 The finite difference equations are formed by integrating 

the diffusion equation over the volume of the mesh box, term by 

term.  For the slab geometry case this is just the integral with 

respect to x from one-half of a mesh space to the left of the 

point to one-half of a mesh space to the right of the point.  We 

   S(r),=  (r)(r)  +  (r)
dr

d
 D(r) r 

dr

d
 

r

1
- r

k

k
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allow the flux at mesh point m to be constant over this range 

thus giving continuity of flux at the interfaces automatically; 

the plot of the flux is therefore a histogram, as shown in Figure 

6.3 for one of the energy groups.  Unfortunately, the flux is 

discontinuous at the mesh box centers! 

 

 

 Fig. 6.2  Edge-Centered Mesh Box for Slab Geometry 

 

 We also need an approximation to the first derivative of the 

flux.  We use the simplest approximation possible, by assuming 

that the flux varies linearly between mesh points; this is known 

as the first forward difference.  Let 

 

This approximation is illustrated in Figure 6.4.  Should we 

require higher-order accuracy, then we will have to use more 

spatial points in the approximation or allow the flux to vary 

within the mesh interval.  The latter case is an example of a 

"course-mesh" method. 
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 Fig. 6.3  Histogram Representation of the Flux 

 

 

 Fig. 6.4  Linear Approximation of 
dx
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The two middle terms on the right-hand side of the equation 

represent continuity of current as   0; hence, they cancel 

each other leaving  

For uniform spacing and constant material properties, the order 

of accuracy is h
2
.  Using Taylor series expansions for the flux 

at xm+l in terms of the flux at xm, we can show quite generally 

that the odd-order derivatives of the flux cancel when the second 

spatial derivative is formed, leading to the foregoing result. 

 The removal term integrates to the following form: 

while the source term becomes 

The final result is obtained by combining all of the above terms, 

giving the 3-point difference equation 
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 Other One-Dimensional Geometries*.  The corresponding 

equation for an arbitrary value of the spatial index k can be 

derived in an analogous but slightly more complicated manner by 

applying the integral operator 

to the diffusion equation.  The result of this derivation is the 

following 3-point difference equation: 

 

 

 The above expression can be simplified somewhat.  Whenever 

rm >> hm, which is true after the first five or ten mesh points 

from the center of a cylinder or sphere, the relationship is 

reduced to 

 dr r
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After removal of the common factor r
k
m , this is identical to the 

expression for the slab reactor. 

   

 Mesh-Centered Method.   A "mesh-centered" mesh box is shown 

in Figure 6.5.  In this model, the flux is also assumed to be 

constant within each mesh box, so it has a histogram appearance 

similar to that shown in Figure 6.3.  The primary difference is 

that the flux discontinuities now occur at the region interfaces. 

We simply ignore this fact! 

 

 Fig. 6.5  Mesh-Centered Mesh Box for Slab Geometry 

 

 The derivation proceeds in the same manner as before, except 

that we must now postulate temporary flux values on the 

interfaces, m-1/2 and m+1/2, that can be used to satisfy 

continuity of current.  Specifically, for the left-hand interface 

we have the derivative approximations, 

and 

 
/2h

 -  
    |

dx

d

1-m

1-m1/2-m

/2h+x 1-m1-m
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For continuity of current, we set 

and solve for m-l/2 in terms of m-l and m, etc. 

 When all of the volume integrations have been performed, the 

leakage integral is found to contain both m-1/2 and m+1/2.  We 

replace these values with those obtained from the continuity 

expression.  The result is also a 3-point difference equation, 

but the coefficients now contain contributions from both adjacent 

mesh boxes, i.e., we have the expression 

 

 Coupling Coefficients.  All of the one-dimensional 

formulations lead to a 3-point equation of the form 

 . 
/2h

 -  
    |

dx

d

m

1/2-mm

/2h-x mm
 (6.22) 

 ,|
dx

d
D  =  |

dx

d
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 (6.23) 
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 .S  =   c  -  b  +  a- m1+mmmm1-mm  (6.25) 
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The coefficients in this equation, namely am, bm and cm, are 

called "coupling coefficients" because they couple the flux at 

point m to its nearest neighbors.  In all of the finite-

difference applications it is found that am+l = cm, which means 

that only half of the coefficients need to be stored during a 

computation.  Since the coefficients only depend upon the mesh 

spacings and material properties of the regions, they need be 

calculated only once for each flux computation, even if the 

solution procedure is iterative. 

 The so-called "nodal" methods also lead to an equation of 

the form of Eq. (6.25).  However, the nodal coupling coefficients 

do not contain simple ratios of D/h values, but instead are 

obtained in a semi-empirical manner, e.g., by using a Green's 

function technique.  Other than that, the properties of the 

coefficients are similar to those of the finite-difference 

coefficients.  On the other hand the "coarse-mesh" methods lead 

to coupling coefficients that are dependent on the flux solution 

itself so that the coefficients must be modified during an 

iterative solution.  Also, in general, am+l  cm, which means that 

all coefficients must be stored during a computation.  The higher 

accuracy that is achieved using fewer mesh points more than pays 

for the cost of the extra effort required per mesh point. 

 In some situations, the finite-difference equations are 

derived in the complete few-group form.  In this case, the 3-

point difference equation has the form 

Here, the matrices A m, B m, and C m are the coefficients of the 

equation obtained from the mesh box integration. A m and C m, 

which correspond to the discretized leakage terms, contain the 

diffusion coefficients and the mesh spacing and happen to be 

diagonal matrices.  In fact, A m+l = C m in slab geometry.  The 

 .S = C - B + A
m1+mmmm1-mm

      -  (6.26) 
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matrix B m corresponds to the reaction rate and leakage terms and 

therefore contains the diffusion coefficients, absorption and 

scattering cross sections, and the mesh spacing values. 

 

 

 6.4  Specification of Boundary Conditions 

 

 The material regions end at either boundary, so that we only 

obtain 2-point difference equations there.  This implies that the 

flux is zero at fictitious mesh points outside of the reactor, 

i.e., -l = M+1 = 0, where M is the total number of mesh spaces 

used.  At the left boundary, the mesh box structure is as shown 

in Figure 6.6 for mesh point m = 0. 

 

 Fig. 6.6  Edge-Centered Boundary Mesh Box for Slab Geometry 

 

 As before, we integrate the diffusion equation over the mesh 

box, term by term.  The leakage formulation in this case is 

 Likewise, the removal and source terms give the following 

results when integrated over the mesh box volume: 
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and 

 There are three different boundary conditions that are 

normally applied to this problem.  These are the following: 

 

 1. 0 = 0, or zero flux condition; 

     2. d 0/dx = 0, or symmetry condition; 

     3. d g0/dx = Kg g0, or extrapolation distance condition, 

where Kg is the reciprocal of the distance to where the 

group g flux goes to zero.  

 

However, only the symmetry condition can be used at r = 0 in 1-D 

curved geometries. 

 Specification of the three possible boundary conditions 

proceeds as follows: 

 

 1. Zero flux condition - We set the coefficient of 0, 

i.e., K equal to a very large value.  One physical 

interpretation of this procedure is that the mesh 

spacing distance to the outside point -l is very 

small, so that the flux 0 approaches the value -l, 

which is zero; 

 2. Symmetry condition - At a symmetry boundary there is no 

net current of neutrons.  We set the value of K equal 

to zero, which eliminates the external leakage.  This 

is equivalent to having the flux go to zero at a very 

large distance from the boundary; 

 ,
2

h
  =  dx (x)(x) 011

r

/2h

0

1  (6.28) 

 .S    
2

hS
  =  dx S(x) 0

1
right
0/2h

0

1  

                                            
                                                         (6.29) 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

202 

  

 3. Extrapolation condition - We set the value of 1/Kg 

equal to the extrapolation distance, which can be taken 

to be 0.71 trg, for example. 

 

The complete equation therefore becomes the two-point expression, 

Similar expressions are obtained for the mesh-centered and 

coarse-mesh formulations. 

 The corresponding appropriate boundary conditions can also 

be applied at the mesh point m = M.  Since the finite difference 

equations are identical at large distances from the origin for 

slab, cylindrical, and spherical geometry, the above equation can 

be applied directly.  Different boundary conditions can be 

applied at the outer boundary and at the inner boundary. 

 

 

 6.5  Direct Solution of the Source Problem 

 

 Consider the one-group one-dimensional finite difference 

form derived above for the spatial mesh given in Figure 6.2.  The 

complete set of equations representing the fluxes in the group at 

all of the spatial mesh points can be put into vector-matrix 

form.  Define a flux and a source vector, respectively, as 

 

 .S  =  
h
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  +  
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The resulting finite difference equation is in the form of a 

source problem 

where the coefficients of the spatial flux values can be put into 

a matrix which has non-zero values only on the main diagonal and 

on the diagonals just above and below the main diagonal.  We call 

this a tri-diagonal matrix, and recognize that we need only store 

3(M+1) coefficient values in the three vectors a , b , and c .  

The G  matrix is written as 

 

   b0  -c0   0        

  -a1   b1  -c1   0       0   

   0  -a2   b2  -c2   0     

      .      

  G

  

     .        . 

               .      

     0       

  

  0  -aM-1   bM-1 -cM-1   

         

  

  0  -aM  bM      

   

          

               (6.33) 

 

 ,S  =  G  (6.32) 
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To obtain the flux solution we must, in effect, invert the G  

matrix, which results in the form 

 The basic solution procedure is Gaussian elimination, but 

since the system matrix is tri-diagonal and contains mostly 

zeros, a simpler solution procedure is possible.  This procedure 

is called Crout's method or the Forward Elimination, Backward 

Substitution (FEBS) method.  In this procedure, we simply ignore 

all non-zero terms.  The object is to reduce Eq. (6.32) to the 

equivalent bi-diagonal form, 

where 

 

 1 -P0  0     
     
  

  

 0  1 -P1   0      0 

  
 

  

   0  1  -P2  0 
 

    

P  =      .       
     

      
     

   
 . 

  

        .     

                
   . 

 
 
     

    

   

   0        0    1 
     

 -PM-1 
  

 

               0 
  

  1  

                                                             (6.36) 

 .SG
-1

  =   (6.34) 

 ,p = P    (6.35) 
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  Once we have obtained this form, we can solve recursively from 

the bottom up for all of the fluxes, i.e., 

and 

 Since there are only two terms in the first row of the G  

matrix, the first row values of Po and po are simply 

and 

For the second row, we divide by the leading coefficient a1, and 

then add rows one and two.  Next, we divide the result term-by-

term by the new diagonal coefficient to obtain the following 

form, which is, in fact, a recursion for all of the other rows, 

namely, 

and 

We find all of the P's and p's in this manner starting at m = 0 

going forward, and then find the 's starting at m = M going 

backward. 

 This relatively simple procedure is very commonly used in 

the case of two and three-dimensional problems, as a part of the 

overall iterative sweep.  In these cases, it is referred to as 

line relaxation.  We will return to this point later. 

 

 ,p  =  
MM
 

 

 1),0.-(M  =  m  for     ,p  +   P  =  
m1+mmm

 (6.37) 

 b/c  =  P ooo   

 .b/S  =  p ooo
  

 )P a  -  b/(c  =  P 1-mmmmm  (6.38) 

 M.1,  =  m for     ),P a  -  b)/(p a  +  S(  =  p 1-mmm1-mmmm
 (6.39) 
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 Matrix Form*.  The FEBS procedure also works in matrix form. 

In the formulation given by Eq. (6.26), the corresponding vector-

matrix equivalent of Eq. (6.32) contains a block tri-diagonal G  

matrix of order (M+1)G.  For 3 energy groups, the form of this 

matrix is as shown below, where the x's represent nonzero values: 

 

                                                            (6.40) 

 

Assume that a relationship exists between adjacent flux vectors 

of the form 

where the matrix P m and the vector p m are as yet undetermined.  

The object is to try to find the values of P m and p m for  

m = 0,M. In this regard, insert the above expression into the 

equation for the mth mesh point to obtain the equation 

 ,p + P
m1+mm

    =  
m

 (6.41) 

 .S  =  C  -  ]p  +  P[B  +  ]p  +  )p  +  P(P[A
m1+mmm1+mmm1-mm1+mm1-mm

-  (6.42) 
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 This expression can be separated into two component 

equations.  Combine the terms in m+l to obtain the equation 

Combine the terms in p m to obtain the equation 

 Since m+l is not a null vector, the bracketed term in the 

first equation gives a recursion relationship for P m in terms of 

P m-1, namely, 

At the left-hand boundary of the core, P o is uniquely determined 

to be 

 We also obtain a recursion relationship for the vector p m 

in terms of p m-l, i.e., 

At the left-hand boundary, p o is uniquely determined to be 

Note that the same inverse matrix appears in both recursions so 

that it only needs to be computed once for each value of m.  

Evaluation of these recursion relations completes the forward 

elimination sweep. 

 When all of the P m's and p m's are known, the backward 

substitution sweep is performed starting at the right-hand side 

of the core at mesh point m = M.  The flux at m = M is obtained 

from the substitution 

 .0  =  C  -  PB  +  PPA
1+mmmmm1-mm

-  (6.43) 

 .S  =  pA  -  pB  +  PA
m1-mmmm1-mm

-  (6.44) 

 .C]PA  - B[  = P
m

-1

1-mmmm
 (6.45) 

 .CB  =  P
0

-1

00
  

 ].pA + S[]PA  - B[  = p
1-mmm

-1

1-mmmm
 (6.46) 
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0
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00
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Continuing the recursion back to m = 0, the flux at successive 

points is obtained as 

completing the solution.  This solution procedure is used in the 

1-D computer program RAUMZEIT. 

 

 

 6.6*  Iterative Solution of the Source Problem 

 

 In its most general form, the source problem can still be 

written as the vector-matrix equation 

For normal two-dimensional diffusion theory calculations, the G  

matrix can be as big as order 100,000, while the number of 

nonzero elements in any given row can be less than 100.  

Therefore, an iterative approach is the only practical method of 

solution.  Furthermore, the properties of the G  matrix are not 

difficult to determine because there are few nonzero terms. 

 There are a number of iterative schemes available, but we 

concentrate on a single scheme in order to illustrate the nature 

of the solution.  This method involves partitioning the G  matrix 

into one part that is easy to invert and a second part that is 

not.  For example, we first operate on both sides of the source 

problem by the transformation operator F that normalizes all of 

the equations such that the terms along the main diagonal are 

unity.  Hence, we obtain the modified equation 

 .p
M

  = 
M

  

 ,p + P
m1+mm

    =  
m

 (6.47) 

 .S = G     (6.48) 

 .SF  =  GF  (6.49) 
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 We define a modified source vector as 

and furthermore partition the GF  matrix into the identity matrix 

I  minus a new matrix R  that contains just zeros along its main 

diagonal, i.e., let 

Under these conditions, the modified source problem takes the 

form 

Next, bring the vector R  to the right-hand side of the 

equation to obtain the form 

 A straightforward method of successive approximations is to 

add an iteration index as a bracketed superscript to the value of 

 and generate an improved solution on the left-hand side of the 

equation by inserting a trial solution on the right-hand side of 

the equation.  Use of the improved solution on the right-hand 

side of the equation leads to a still better value on the left-

hand side, and so on.  The ith iterate is generated using the 

formula 

 

 Let the initial arbitrary guess be 
(0)
, which may 

conveniently be taken to be the null vector 0 .  We begin the 

iteration process with 
(0)
 and continue to insert the left-hand 

result into the right-hand side of the equation until the 

solution "converges".  The solution is said to converge if the 

 ,SF    k  (6.50) 

 .GF  = )R  -  I(  (6.51) 

 .k  =  )R  -  I(  (6.52) 

 .k + R     =   (6.53) 

 .k +R
1)-(i

    = 
(i)

 (6.54) 
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difference between the true solution  and the jth iterate 
(j)
 

is less than a given error, or flux convergence criterion f, in 

some sense.  Using the Euclidean l2 norm (square root of the sum 

of the squares of the point-wise deviations), this expression can 

be written as  

A more practical test is to compare the last iterate to the next-

to-last iterate, since the true solution is unknown. 

 The iteration scheme will converge if the spectral radius μ 

of the R  matrix, which is defined as the absolute value of the 

largest eigenvalue of the R  matrix, satisfies the expression 

Formally, the eigenvalues are obtained by setting R  - I  = 0. 

The speed of convergence increases as (R ) decreases.  A rough 

proof of this statement proceeds as follows:  Let the initial 

guess be 
(0)
 = 0 .  Then, the results for the first j iterations 

can be written as 

The term in the brackets is the matrix form of a geometric 

series.  Summing this series by adding the rest of the terms out 

to  (i.e., multiply by ( I  - R j
)( I  - R j

)
-l
 and expand the second 

expression in series) leads to a closed expression for the jth 

 .  < - f

(j)
 (6.55) 

 1.  < )R(  
 

 

.k)R + ... + R + R + I( = 

.    

.    

.    

,k)R + R + I( = 

,k)R + I( = k + R = 

,k

1-j2(j)

2(3)

(1)(2)

        

      

        

  =  
(1)

 (6.56) 
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iterate, namely, 

 But the exact solution is 

Hence, convergence occurs if and only if the factor R j k  

approaches the null vector 0  in some sense.  The fractional 

error is given by the equation 

Therefore, if the spectral radius of R  is less than unity, then 

(R ) to the jth power approaches zero and convergence is 

assured.  Proof that the matrix R  is indeed possessed of a 

spectral radius that is less than unity is beyond the scope of 

this treatment.  However, for the diffusion equations in multi-

group form, R  belongs to a class of matrices known as an "S-

matrix" that does possess the required properties.   

 The partitioning could have been done in other ways, for 

example, let GF  be taken to be 

where V is easy to invert.  Substitution into the original 

source problem then gives the expression 

or 

 .k)R - I()R - I
j-1

    (  =  
(j)

 (6.57) 

 .k)R - I
-1

  (  =   (6.58) 

 .])R([  
R

j

j

    =  
 - 

  =  

iterate

jth the for

error fractional (j)

 (6.59) 

 ,Q  -  V  =  GF  (6.60) 

 k  +  Q  =  V   

 .kV  +  QV  
-1-1

 =  (6.61) 
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The iteration scheme becomes 

The important thing to notice is that the convergence properties 

of this problem depend on the spectral radius of V -1Q , which 

could conceivably be smaller than the spectral radius of R , so 

that the problem posed in this form could converge faster. 

  

 Multidimensional Problems.  The commonly used 

multidimensional geometries are XY, R , RZ, XYZ, R Z and HEXZ.  

With the exception of the hexagonal geometries, these coordinate 

systems are composed of orthogonal components.  The corresponding 

finite-difference equations, as obtained by mesh-box integration, 

contain independent leakage contributions from each coordinate 

direction of the same type as are obtained in the one-dimensional 

case.  We are led to 5-point equations in 2D and 7-point 

equations in 3D, which couple all of the nearest neighbors of a 

given mesh point in a given energy group. 

 Consider one of the 5-point formulations, for example, in XY 

geometry.  Using any type of consistent ordering, it is not 

possible to put all of the adjacent mesh point fluxes next to one 

another.  For example, if we list all of the x-fluxes for the 

first y-point, and then all of the x-fluxes for the second  

y-point, etc, we obtain a 5-stripe G  matrix.  

The three center stripes correspond to the x-direction while the 

upper and lower stripes correspond to the y-direction.  The span 

between the sets of stripes represents the number of x-points in 

any given row.  The order of the matrix for each group is NX by 

NY. 

 

 .kV + QV
-11)-(j-1

    =  
(j)

 (6.62) 
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                                                             (6.63) 

                                                                

 The 7-point equations in XYZ geometry produce a G  matrix of 

the form, 

              

                                                            (6.64) 

 

In this case, the center stripes correspond to the x-direction, 

the next stripes above and below correspond to the y-direction, 

and the upper and lower stripes correspond to the z-direction.  

The span between the central and upper-middle stripes represents 
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the number of x-points in a row, while the span between the 

upper-middle and upper stripes represents the number of y-points 

in a row.  The order of the matrix for each group is NX by NY by 

NZ. 

 We search for computationally efficient methods of finding 

the flux solution vector .  We recognize that we only want to 

work with and store non-zero elements in the G  matrix.  One 

attractive procedure, known as the Gauss-Seidel method, involves 

partitioning the G  matrix into several pieces.  For example 

let's call the central three stripes D , the upper triangular 

portion U, and the lower triangular portion L.  We then have 

the problem 

We now add an iteration index i.  Assume that all of the U 

components are known in terms of the old fluxes at step i.  

Therefore, we have the problem 

 The problem is split in this somewhat unusual manner to 

emphasize the fact that we invert only a portion of the G  matrix 

at a time by FEBS, corresponding to a single line in the x-

direction.  This is called a line-relaxation.  Once this portion 

is available, we use it as a known function of the new fluxes to 

compute the portion of L (i+l)
 needed to invert the next line by 

FEBS, etc., until all lines are solved.  Symbolically, the 

solution is of the form 

where we recognize that the inverse was computed in a series of 

steps.  This iteration procedure converges approximately twice as 

fast as those methods that are based on using old flux values in 

 .S  =  )D  +  L  +  U(  (6.65) 

 .U  -  L  -  S  =  D
(i)1)+(i1)+(i
 (6.66) 

 ,U)L + D( - S)L + D
(i)-1-1

      (  =  
1)+(i

 (6.67) 
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both the L and U terms. 

 An even better procedure is known as the method of 

successive over-relaxation (SOR).  This procedure is similar to 

the Gauss-Seidel method, but also includes a flux extrapolation 

that accelerates convergence.  It is, in effect, a two-step 

method.  The first step is given by Eq. (6.67), but the values 

thus obtained are referred to as the intermediate flux estimate 
(i+1/2)

.  The second step then gives the new fluxes according to 

the equation 

Beta is known as the over-relaxation coefficient, and has a value 

between 1 and 2.  When  = 1 we have the ordinary Gauss-Seidal 

method.  A good value for the UVAR reactor is  = 1.6. 

 It should be noted that  is obtained automatically in 

computer codes such as EXTERMINATOR and VENTURE.  Periodically, 

the ordinary keff computation is interrupted, all sources are set 

to zero, and the convergence of the iterative flux solution 

towards the null vector is observed.  An optimum value of  is 

estimated from an appropriate norm of the flux error vector, and 

then the original computation is resumed using the new .  When 

 is chosen near the optimum value, a considerable speedup in 

convergence is usually obtained. 

 

 

 6.7  Iterative Solution of the Critical Reactor Problem 

 

 Consider now that there is no external source present so 

that the reactor equations become homogeneous.  As in the one-

speed case we introduce a characteristic value into the equations 

and convert the problem to a static eigenvalue problem of the 

form 

 .) -  (1  +    =  
(i)1/2)+(i1)+(i
 (6.68) 
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We define the terms appearing on the left-hand side of the 

equation as the loss matrix operator L, i.e., 

and further define the fission terms as the production matrix 

M, i.e., 

This is an example of what is known as a generalized eigenvalue 

problem because there is an operator on either side of the 

equation.  The L operator contains the leakage and absorption 

plus scattering terms while the M  operator contains the fission 

terms.  Formally, the problem can be put into the form 

which is an ordinary eigenvalue problem.  The values of 1/  can 

therefore be identified with the infinite number of 

characteristic values of the matrix operator M -1 L. 

 As before, we discretize the problem over space by 

integrating over a mesh box.  In this case we put all of the 

group spatial fluxes into a single supervector , to obtain the 

discretized eigenvalue problem: 

Both L' and 'M  are of order (M+1)G by (M+1)G for a one-

dimensional problem, where M is the number of mesh spaces and G 

is the number of groups.  Note that the number of values of  is 

 
. M

1
         =            L    

production          ndestructio

 (6.69) 

 ),H  +  D(-    L 2  (6.70) 

 .F    M
T
 (6.71) 

 ,
1

  =  LM
1-

 (6.72) 

 .
'

  =  L'
M
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now M+1 instead of infinity, which is one of the effects of 

approximating a continuous problem by a discretized problem.  For 

an accurate solution one hopes that the largest values of , 

corresponding to the fundamental mode and the first few 

harmonics, are adequately represented by the choice of an 

appropriate spatial mesh. 

 For the reactor eigenvalue problem we must do two things: 

 

 1. Find the largest value of 0 = keff and the 

corresponding fundamental mode solution 0. 

 2. Show that convergence of the iterative solution leads 

to the fundamental mode solution. 

 

We will first discuss the nature of the iterative scheme used to 

solve the eigenvalue problem, which corresponds to what is known 

as the "outer iteration."  Let an outer iteration index i be 

added to the equations as a bracketed subscript such that an 

improved value of the flux is calculated on the left-hand side of 

the equation using an earlier approximation on the right-hand 

side, i.e., 

The iterative scheme that we employ is the following, as 

illustrated in Figure 6.7. These steps are: 

 

a. Make a guess for the flux solution, e.g., let (0) 

arbitrarily be taken to be uniform over the core.  This 

can be accomplished using the unity vector 1 which is a 

vector having 1's in every location. 

 

 

 .
'

 =  L'
1)-(i

1)-(i

(i)

M
 (6.74) 
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  1) SET VARIABLE DIMENSIONS 

  2) READ MACROSCOPIC SIGMAS, GEOMETRY 

  3) FINITE - DIFFERENCE CONSTANTS 

        (OUTER ITERATION LOOP) 

  4) FISSION SOURCE 

                (ENERGY GROUP LOOP) 

   5) INSCATTER SOURCE 

        (INNER ITERATION LOOP) 

  6) LINE OVERRELAXATION 

  7) NEW FLUXES 

  8) EIGENVALUE 

  9) CONVERGENCE TEST 

 

 Fig. 6.7  Structure of a Multi-group Calculation 

 

 b. Compute the corresponding eigenvalue (0) by inserting 

the guess into both sides of the balance equation.  

Since  is a single number, we must treat the balance 

equations correspondingly.  The most physically 

meaningful reduction is to compute the total production 

rate and the total destruction rate by summing over all 

groups and over all mesh points.  Mathematically, this 

can be written in very compact form using the inner 

product definition 

  In our case, we take the inner product with the unity 

vector 1, to obtain 

 

 number.  a  =  vu  =  vu  =  )v,u ii

n

=1i

T
(   

 .k  =  
raten destructio T otal

rate production T otal
  =  

)1,L'(

)1,'
   eff(0)

(0)

(0)
M(

=(0)  (6.75) 
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  Note that the leakage part of the loss operator is only 

composed of leakage over the outer boundaries, and is 

therefore usually summed separately.  Naturally, since 

(0) does not give a consistent result on both sides of 

the balance equation, (0) is only a first guess as to 

the true criticality keff, and we must compute 

successive values of (i).  There is also a second way 

to obtain the value of (i), which is based on saving 

the total production integral 

 c. Use the values of (0) and (0) to obtain an effective 

fission source vector, defined as 

  Actually, we only use the fission source for one group 

at a time when the group fluxes are obtained 

separately, as in the multidimensional case. 

 d. If one inserts this source vector into the eigenvalue 

problem given by Eq. (6.74), one obtains, in fact, a 

source problem of the form 

  Formally, the solution for (1) is 

  where the inversion can be done in two ways: 

 

  1. direct inversion using the FEBS method; 

  2. iteratively, by guessing 
(0)

(1)
 and iterating to 

 ).1,'  
(i)

M(=P(i)  (6.76) 

 .
'

 = S
(0)

(0)

(0)

M
 (6.77) 

 .S  = L'
(0)(1)
 (6.78) 

 ,SL'  
(0)

-1
 =

(1)
 (6.79) 
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convergence where 
(j)

(1)
  (1) on the jth inner 

iteration. 

 

  When the group fluxes are obtained separately we must 

add the scattering source to the fission source and do 

the inversion symbolized by Eq. (6.79) one group at a 

time.  Down-scattering contributions are calculated 

using the newest group flux values. 

 e. Compute (1) as done in step b.  Alternately compute 

(1) from the integral production rate according to the 

formula 

 f. Check for convergence; that is, check for consistency 

between the production and loss vector in the balance 

equation by comparing the eigenvalue (1) to the 

eigenvalue produced in the previous step, namely (0). 

We ask that the fractional change in the eigenvalue be 

less than a convergence criterion λ, that is, 

  If this condition is satisfied, we have solved the 

problem and our last computed flux is the solution that 

is desired.  If not, then another iteration is 

required.  Actually, this test is not always guaranteed 

to produce success, especially when the sequence of 

(i) values oscillates about the true value.  A more 

restrictive additional test is usually performed on 

successive flux solutions, and requires that 

 .
P

P
  =  

1)-(i

(i)

1)-(i(i)  (6.80) 

 .    
|-  |

  =  
 in change

Fractional

(1)

(0)(1)
 (6.81) 
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 The completion of steps c through f comprises one outer 

iteration.  If convergence is not attained, then (1) is used to 

compute a new source and steps c through f are repeated, as many 

times as necessary, until convergence is reached on the ith outer 

iteration giving the solution (i).  In most multidimensional 

computer codes, convergence is also accelerated by performing 

what is known as a source extrapolation. 

 Since the problem is homogeneous, the normalization of the 

flux is arbitrary.  Therefore, we must specify the operating 

power level of the system and scale the flux solution so that the 

integrated fission rate gives the specified total power.  If we 

define the matrix f to be the mesh-box integrated matrix of 

fission cross sections, define P as the power in watts and let  

c = 3.1 x 10
l0
 fissions/s-watt, then the normalization factor is 

 

where b is an appropriate factor that depends on the problem 

geometry.  The inner product in the denominator, times b, is 

equal to the total fission rate in the reactor.  The properly 

scaled flux solution is therefore 

 

 

  

 .    

          change

flux relative

       Maxim um

 (6.82) 

 .
)1,

(i)f
b(

Pc
    N(i)  (6.83) 

                             . N  =  
(i)(i)

scaled

(i)
                  (6.84) 
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6.8* Convergence of the Outer Iteration to the Fundamental Mode 

Solution 

 

 In the previous section we described an iterative method for 

solving the reactor eigenvalue problem.  We finally show that the 

solution that is obtained is indeed equal to the fundamental mode 

solution.  To illustrate this proof, we work with a much simpler 

problem that contains all of the essential features of the 

reactor eigenvalue problem. 

 Consider the ordinary eigenvalue problem 

where A = A T
 is a symmetric system matrix (not an essential 

requirement).  By assigning an iteration index i as a bracketed 

subscript, the iteration procedure used previously can be written 

as 

One finds the new value of the vector x (i) by operating on the 

previous value x (i-l) by the system matrix A .  At each step, the 

value of (i-l) is estimated using the solution obtained 

previously.  One estimate is obtained by taking inner products 

with the unit vector, i.e., 

A somewhat better variational estimate, corresponding to a type 

of least-squares analysis, is obtained by taking the Rayleigh 

Quotient, giving 

 , x = xA    (6.85) 

 .
xA

  =  x
1)-(i

1)-(i

(i)  (6.86) 

 .
)1,x(

)1,xA

1)-(i

1)-(i
(

  =  1)-(i  (6.87) 
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 In either event, if the initial guess is the vector x (0), 

succeeding iterates are obtained by successively operating on 

x (0) by the system matrix A .  The result of the first i iterates 

is the following: 

Since  is of the order of magnitude of unity, the  product in 

the denominator is also of a magnitude near unity. 

 Now, the system matrix A  is of the order n and admits n 

exact eigenvalues and their corresponding eigenvectors.  Let 

these exact equations be written as  

where e j are unit vectors.  For a symmetric matrix, the 

eigenvectors are orthogonal, i.e., 

 .
)x,x(

)x,xA

1)-(i1)-(i

1)-(i1)-(i

    

    

1) - (i

(
  =   (6.88) 

 

   .

][

xA
  =  x

 

.

.

.

 

);
xA

(
A

  =  x

 

       ;
xA

  =  x

(k)

1-i

0=k

(0)

i

(i)

(0)

(0)

(1)

(2)

(0)

(0)

(1)

 (6.89) 

 1),-(n0,...,  =  j        ;e  =  eA
jjj

 (6.90) 

 ,   = )e,e jkkj
(  (6.91) 
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where jk is the Kroniker delta.  By operating on the equation by 

A successively, we further show that  

 

 We now expand the initial guess x (0) in a power series in 

terms of the eigenvectors of A , namely, 

The coefficients ak can be considered to be known because they 

can be obtained by taking the inner product of the above 

expression with respect to e j to obtain 

Insert the expansion into the expression for the ith iterate and 

make use of the expression derived above for the ith power of the 

system matrix A .  The result is 

 Factor out the fundamental mode eigenvalue 0, and write 

the term containing the fundamental mode eigenvector separately 

 

.e  =  eA

 

.

.

.

, e  =  eA

 

, e  =  )e(A  =  )eA(A

j

i
jj

i

j

3
jj

3

j

2
jjjj

 (6.92) 

 .eka  =  x k

1-n

=0k

(0)
 (6.93) 

 ).x,e (0)k
(  =  ak  (6.94) 

 . 

][

ea

  =  

][

eAa

  =  x

(k)

1-i

0=k

k

i
kk

1-n

0=k

(k)

1-i

0=k

k

i

k

1-n

0=k

(i)
 (6.95) 
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from the rest of the summation.  The resulting form is 

 

Since 0 is the largest eigenvalue of the reactor problem, the 

ratio 

 

In the limit as i   (convergence), 

Hence, all terms in the square brackets except the first tend to 

vanish leaving 

where the factor 

and 

 We have proved that a power iteration scheme of the type 

used in the above discussion converges to the fundamental mode 

 .ea  +  ea

][

 = x k

0

k

i

k

1-n

1=k

00

(k)

1-i

0=k

i
0

(i)  (6.96) 

 1).-(n1,..., = k  1; < 
0

k      (6.97) 

 . 1)-(n1,..., = k   0;
0

k

i
 

i
lim  (6.98) 

 , e[constant]  =  ea
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   x 000

(k)

1-i

0=k

i
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(i)
 (6.99) 
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solution.  As before, the scaling of the solution is found to be 

arbitrary and is usually obtained by specifying the reactor 

power.  From a physical viewpoint, we can postulate that the 

iteration process consists of sweeping out the contributions of 

the higher harmonic modes in the initial flux guess until only 

the fundamental mode remains.  Naturally, since the values of  

lie in the sequence 0 > 1 > 2 > ... > n-1, the highest 

harmonic terms are eliminated first until the final convergence 

depends only upon the ratio of the first-harmonic mode eigenvalue 

to the fundamental mode eigenvalue.  This ratio is called the 

"dominance ratio," i.e., 

 Physically, the closer the first harmonic mode is to being 

critical, the longer one must iterate to obtain convergence.  One 

can demonstrate this fact numerically by solving the eigenvalue 

problem for a series of similar but successively longer cores.  

It has already been shown in Chapter 5 that the eigenvalue 

separation between modes decreases as a core gets larger. 

 

 

 6.9 Qualitative Comparison Between One-Speed and Two-Group 

Solutions 

 

 We have shown that the one-speed equation is amenable to 

analytic solution for a variety of reactor configurations, 

subject only to the validity of spatial flux separability.  For 

the one-dimensional case, separability is not a problem and 

solutions can be generated for a reactor having any number of 

homogeneous regions by suitably satisfying the boundary 

conditions at each interface. 

 In the case of the few-group diffusion equations, we have 

 .  
Ratio

Dominance

0

1   (6.100) 
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adopted an approach of seeking numerical solutions to the finite 

difference analog of the diffusion equations.  As a matter of 

fact, analytic solutions are still possible for the two-group 

case, but the amount of effort required for anything beyond a 

two-region, one-dimensional system is prohibitive.  Suffice it to 

say that the numerical solutions have been verified against the 

analytic solutions, and against experiments, so that one can have 

confidence in the numerical results, subject only to the validity 

of diffusion theory itself. 

 Perhaps the best way to gain an appreciation for the 

differences between one-speed and few-group flux solutions is to 

compare the flux shapes and eigenvalues (criticality) obtained in 

similar problems.  In such comparisons, the differences can be 

explained in terms of the physical processes that occur and the 

ability of the reactor model to represent these processes.  We 

illustrate the nature of this comparison for the simple case of 

the bare, homogeneous reflected reactor shown in Figure 6.7. 

 

 Fig. 6.7  One-Dimensional Reflected Reactor 

 

 The flux shape obtained for the one-speed formulation is 

shown in Figure 6.8(a), while the flux shapes for the two-group 

representation are shown in Figure 6.8(b).  There are several 

differences worth noting.  First, we compare the thermal flux in 

the two-group situation with the one-speed flux, remembering that 
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the fission rate is essentially proportional to the thermal flux. 

In the one-speed model, the flux decreases with distance from the 

core boundary with a concave curvature suggesting out-leakage.  

In the two-group case, there is what is known as a "reflector 

peak" with a curvature at the core boundary that suggests a net 

in-leakage of thermal neutrons.  This is, in fact, caused by the 

superposition of two separate effects:  the reflector peak is the 

sum of neutrons that were thermal in the core and diffuse out 

into the reflector, plus neutrons that have diffused out of the 

core as fast neutrons and have subsequently thermalized in the 

reflector.  Since the one-speed model is unable to treat neutron 

moderation, the reflector peak is absent there. 

 

 Fig. 6.8 Comparison of One-Speed and Two-Group Solutions 

for the Bare Homogeneous Reflected Slab Reactor 
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 The phenomenon of flux peaking in moderator regions is not 

limited to reflector-fuel interfaces.  One sees "water gap 

peaking" in places where control rods have been withdrawn leaving 

a water-filled region between fuel assemblies or fuel rods.  Such 

peaking can lead to local hot spots because the fission rate in 

the fuel next to the water region may be higher than in the rest 

of the fuel bundle.  Oftentimes, this peaking is sufficiently 

large that it must be recognized in the design and corrective 

action taken.  Possible alternatives are the use of control rod 

followers to keep water out of the gap, the use of fixed poisons, 

or the use of lower enrichments in the adjacent fuel rods. 

 The second major observation is that the magnitude of the 

fast flux distribution is much greater than the magnitude of the 

thermal flux distribution.  Of course, the shape is also 

different because fission neutrons are only born in regions 

containing fuel and can only enter non-fueled regions by 

diffusion.  The magnitude difference can be explained 

qualitatively as follows.  Since neutrons are born fast and are 

absorbed at thermal energies, the scattering (moderation) rate of 

fast neutrons must be comparable to the absorption rate of 

thermal neutrons, i.e., for two groups, 

But s1 2 < a2 because the fission cross section in fueled 

regions is large.  Hence, 1 > 2.  Ratios of 2 to 10 are 

commonly observed between the fast group flux and the thermal 

group flux in typical thermal reactor calculations.  Finally, it 

should be noted that the few-group calculations generally predict 

a different value of keff than the one-speed calculation because 

the thermal flux distribution is represented more accurately.  

Referring to Figure 6.8, the thermal flux is higher at the 

reflector interface than in the one-speed case, which leads to 

more fissions in the core and a greater keff. 

 .    
2a212s1  
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 Problems 

 

6.1 Use an available one-dimensional, two-group computer program 

to obtain keff and the two-group flux solution for a 

cylindrical model of the UVAR swimming pool reactor, where 

the core dimensions are taken as the following:  Equivalent 

radius is 15 cm.  This is a circle having the same area as 

the actual square core; Equivalent height of the bare core 

is 67 cm. The actual core is 59.7 cm high and is reflected. 

Using the concept of reflector savings, the equivalent bare 

core is about 7 cm longer, and this is the value to be used 

in calculating the transverse buckling B
2
z .  For two-groups, 

a different B
2
 should really be used for each group. 

 Use a mesh spacing of approximately ½ cm in the core and 1 

cm in the reflector.  Appropriate two-group constants are 

the following: 

 

              Core                  Reflector 

    D1 = 1.36              D1 = 1.27 

    D2 = 0.192             D2 = 0.146 

      Σa1 = 0.00242           Σa1 = 0.000468 

  Σa2   = 0.0909   Σa2 = 0.0197 

   Σs1 2 = 0.0344            Σs1 2 = 0.085   

          Σf1 = 0.00312 

        Σf2 = 0.149 

           = 2.42 

        1 = 1.0 

        2 = 0. 

 

 Normalize the fluxes to a total power of 2MWT and plot as a 

function of position.  Comment on the results. 
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6.2 Write your own two-group, one-dimensional computer program 

in either FORTRAN or BASIC using the methods described in 

Chapter 6.  Using the data given in Problem 6.1, find the 

value of keff and the two-group flux solution for the UVAR 

reactor.  If possible, compare your solution to that 

obtained from an available computer code. 

 

6.3 Derive the generalized one-dimensional diffusion equation in 

finite difference form as given by Eq. (6.20).   

 

6.4 Using the 1 and 2 solutions from Problem 6.1, obtain 

equivalent l-Group constants for each region.  Explain your 

methodology.  Now for a certain power level, solve for  in 

the l-group problem.  Compare the values of keff and the 

power distributions in the two cases. 

 

6.5 Derive the 3-point finite-difference equation for the "mesh-

centered" mesh-box formulation, as given by Eq. (6.24). 

 

6.6 Derive the 2-point finite-difference equation at a boundary 

point for the "mesh-centered" formulation, which corresponds 

to Eq. (6.30) for the "edge-centered" formulation. 

 

6.7 The Taylor series expansion of a function y(x) at a given 

point gives the corresponding value at another point h units 

away according to the expressions 

 

 and 

 ...+  
3!

(x)yh
    

2!

(x)y"h
  +  y(x)h    y(x)  =  h)    y(x

32
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The forward difference operator Δ works to the right of the point 

so that 

 and 

 The central difference operator δ works about the point, so 

that 

 The backward difference operator  works to the left of the 

point so that 

and 

 Using the above information, show that the second derivative 

y"(x) as approximated by either the forward or backward 

difference operator is given by the expressions 

 or 

 while the second derivative as approximated by the central 

difference operator is 

 .+ 
3!

(x)yh8
    

2!

(x)y"h4
  +  y(x)h2    y(x)  =  2h)    y(x ...

32

 

 

 y(x),  -  h) + y(x  =  y(x)  
 

 y(x).  +  h)  +  2y(x  -  2h)  +  y(x  =  y(x)2  
 

 h).  -  y(x  +  2y(x)  -  h)  +  y(x  =  y(x)2  
 

 h)  -  y(x  -  y(x)  =  y(x)  
 

 y(x).  +  h)  -  2y(x  -  2h)  -  y(x  =  y(x)2  
 

 0(h)  +  
h

y(x)
  =  

dx

yd
2

2

2

2

 

 

 0(h).  +  
h

y(x)
  =  

dx

yd
2

2

2

2
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 Hence, show that the central difference approximation is 

more accurate for a given mesh spacing than either the 

forward or backward difference approximations. 

 

6.8 You are given the three vectors 

  a) Do these vectors span the three-dimensional space, 

that is, are they linearly independent? 

  b) Describe the concept of linear independence and 

its consequences, and demonstrate graphically 

using the above vectors. 

  c) Three orthogonal vectors in three-dimensional 

space are the vectors 

   Show that these vectors are orthogonal, and find 

the corresponding unit vectors. 

  d) If x 1 is expanded as x 1 = a r  + b s  + c t , find the 

coefficients a, b, and c. 

 

6.9 You are given the source problem A x  = s , where 

 ).h0(  +  
h

y(x)
  =  

dx

yd 2

2

2

2

2

 

 

 .

1

2

0

 = x   and    

0

1

0

 = x    ,

1

1

2

 = x 321  

 

 

2

2-

0

 = t  and  ,

2

2

0

 = s   ,

0

0

2

 = r  

 

 .
1

2
  =  s  and 

1/2

1-
   

0

2/3
  =  A  
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  a) Find the exact solution x  for this problem. 

 We set up an iterative procedure to solve the problem.  Let 

the A  matrix be partitioned into the form 

so that the iteration scheme for the ith iterate is written 

as 

 .s  +  xT  =  x
1)-(i(i)

 

  b) Will the iteration converge?  Why?  Estimate the 

number of iterations, n, needed to reduce the 

relative error, 

           to less than 1%. 

  c) Using the initial guess x (0)
 = 

0

0
, do the first n 

iterations to three-place accuracy and compare the 

relative error obtained to the estimated relative 

error. 

  d) Find an iteration scheme that converges more 

rapidly. 

 

6.10 Consider the ordinary eigenvalue problem 

  a) Using hand calculations, find the largest 

eigenvalue and the corresponding eigenvector 

 ,T  -  I  =  A  
 

 ,
x

x - x
  

(n)

 =  

 

 . 

4

3

2

1

    

3

3

2

1

    

2

2

2

1

    

1

1

1

1

  =  A      where,x  =  xA  

 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

235 

  

iteratively.  Normalize the equations so that the 

solution vector is a unit vector.  Solve at least 

up to x (4)
.   

  b) If we multiply through by A -l
, we obtain the 

equation 

   Repeat the process done in part a.  What does the 

resulting solution correspond to?  (You may have 

numerical accuracy problems here). 

  c) Check your results against those obtained from an 

available computer root-finding program. 
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                        CHAPTER 7 

 

PERTURBATION THEORY 
 

 In Chapters 5 and 6 we discussed the static behavior of a 

reactor system that is describable by the diffusion theory 

approximation to the neutron transport equation.  Here we 

consider a reactor system that is disturbed in some manner from 

its critical state.  As a result of this disturbance, it exhibits 

a transient response.  We first examine the characteristics of 

the perturbation to find the driving force for the transient.  In 

Chapter 8, we examine the resulting transient behavior. 

 A perturbation is defined as a local change in the material 

properties of the reactor system, for example, the insertion of a 

control rod or the addition of a soluble absorber into the 

reactor coolant.  Probably the most important thing to realize is 

that the effect of a given perturbation depends upon where it is 

placed in the reactor.  This Chapter deals with the subject of 

perturbation theory, which is a formal way of calculating 

perturbation effects. 

 There is another form of perturbation theory, applicable to 

inhomogeneous problems, which has a different interpretation.  

This form is useful for radiation shielding applications.  

However, it can also be used for the analysis of fuel pin cells. 

 Various types of feedback mechanisms produce additional 

perturbations in reactor properties.  Using the same formalism, 

the topics of thermal feedback, fission product poisons and 

reactor depletion are covered in Chapter 9. 

 

 

 7.1  Adjoint Equations 

 

 The reactor balance equation, written out as a function of 
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both space and energy, is in the form of a generalized eigenvalue 

problem of the type 

 

where 

           i( r

,E) is the flux in the ith harmonic mode; 

     is the destruction operator;    

     is the production operator; and  

 

 i is the criticality (eigenvalue) of the ith 

harmonic mode.  

 

 Mathematically, each eigenvalue problem possesses a dual or 

adjoint formulation of the type 

which has the following properties: 

 

 1. the eigenvalues are identical to those of the flux 

problem; 

    2. the operators L* and M* can be derived from the 

corresponding operators L and M; 

    3. The boundary conditions on   and  * are identical; 

    4. the eigenfunction solutions of   and  * for different 

characteristic numbers (eigenvalues) are orthogonal in 

 0,1,2,...,  =  i   ,
E),r(M

  =  E),r
i

i









(L
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a weighted integral sense. 

 

The function  * is known as the adjoint flux or the importance 

function, which will be given a physical significance shortly. 

 We use the "kets" notation, which implies integration over 

space and energy, to define the adjoint operators.  For the 

production operator, let 

The definition of M* is then written as 

To actually obtain the operator form of M*, one must substitute 

the operator M into the left-hand side of the definition and 

change the order of integration by integrating by parts to put 

the result into the form given in the right-hand side of the 

expression.  A matching of corresponding terms leads to the form 

of the operator M*.  The operator L* is obtained in a similar 

manner from the expression 

 The treatment of the destruction operator is somewhat more 

complicated than the treatment of the production operator because 

of the presence of the leakage term.  We must integrate this term 

by parts twice in order to put the left-hand side of the defining 

equation into the form appearing on the right-hand side.  When 

this operation is done, terms that must be evaluated on the outer 

boundary of the reactor are obtained.  These boundary terms serve 

to define the boundary conditions on the adjoint flux, and in 

fact lead to the conclusion that the boundary conditions on the 

flux and the adjoint are identical.  This result might have been 

 .>M ,<  dr   dE E),r(E)M,r
i

*

ji

*
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j
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expected intuitively because of the similar form of the flux and 

adjoint equations. 

 

 Adjoint Operators M* and L*.  By definition, the adjoint 

operator M* is obtained from the expression 

where 

We perform the left-hand integral over space and energy, and then 

rearrange the resulting product of two integrals and redefine the 

dummy variables.  We obtain the expression: 

 

Hence, by comparison to the right-hand integral, the adjoint 

operator is obtained as 

 .dE } ){E(  (E) = M
E

0f
* '  max    (7.7) 

 By definition, the adjoint operator L* is obtained from the 

equation 

where, 
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We treat the resulting terms separately. 

 

 1st term (leakage) - In effect we integrate over space by 

parts twice (This is one form of Green's Theorem - see 

Hildebrand, Advanced Calculus for Engineers).  The result is the 

equation 

The boundary conditions are either;   and  * are zero at the 

surface of the reactor; or   and  * are zero.  Thus, both 

surface integrals vanish. 

 

 2nd term (absorption and out-scatter) - This term is simply 

rearranged to give 

 3rd term (in-scatter) - Reverse the order of integration and 

redefine the dummy variables.  One obtains the expression 

Hence, by comparison to the right-hand integral, the adjoint 

operator is defined as  
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 Note the exchange of roles between   and  f in M* and the 

change (reversal) of energy scattering direction in L*, which 

implies a type of transposition from M and L, respectively. 

 

 Proof of Orthogonality of   and  *.  Having obtained the 

operators M* and L* from M and L, we are in a position to prove 

orthogonality between  i and  j
*
.  We have the flux equation 

and the adjoint equation 

Multiply the flux equation by  j
*
, multiply the adjoint equation 

by  i, and integrate the resulting expressions over energy and 

the volume of the core.  The results are 

 

and 

Subtract the second equation from the first, recalling the 

definitions of the adjoint operators.  Since the  's are 

distinct, the result is 

 .dE } ){E  (E -  +  + D   - = L s
E

0sa '        max*   (7.11) 
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This equation implies that  i is orthogonal to  j
*
 with respect 

to the weighting function M.  We arbitrarily normalize  j
*
 so 

that 

where  ij is the Kroniker delta, which has the value 1 when i = j 

and has the value 0 when i =/ j. 

 We compare the operators L and L* and the operators M and M* 

more carefully.  The only difference between L and L* is the 

transposition of the energy variables E and E’ in the scattering 

transfer integral.  Likewise, the only difference between M and 

M* is the transposition of the roles of the spectrum function 

 (E) and the fission production term  f(E) with respect to the 

integral over energy.  We therefore conclude that in the case 

where energy is not treated explicitly, i.e., the one-speed 

problem, the corresponding operators are identical. 

 The one-speed diffusion equation is a special case.  For 

this situation,    1, giving the relationship 

Likewise, 

giving 

We say that the one-speed equation is self-adjoint. Obviously, we 

then have the condition that 

 0. = > M,< )
1
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(
ij
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which means that the various one-speed harmonic fluxes are 

orthogonal to one another with respect to  f as a weighting 

function. 

 

 

 7.2 Matrix Form of the Adjoint Equations 

 

 If one proceeds to discretize the reactor balance equation 

over N space intervals and G energy groups one obtains the 

vector-matrix form of the generalized eigenvalue problem, namely, 

where L is the discretized destruction matrix (which is block 

tri-diagonal for a one-dimensional problem); M  is the 

discretized production matrix, (which is block diagonal);  i is 

the flux super-vector for the ith harmonic mode, (which is G 

groups by N mesh intervals long);  i is the corresponding 

criticality of the ith harmonic mode, where the total number of 

modes is N. 

 By standard mathematical techniques, it can be shown that 

the dual or adjoint to the above problem is the problem 

which is sometimes called the "left" eigenvalue problem because 

it can also be written in the form 

 ,  =  
ii 
*
 

 

 1), - 0,1,...(N = i     ,
M

 = L
i

i

i
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We make use of the fact that the transpose of a product is the 

product of the transposes in reverse order to obtain the latter 

form of the equation. 

 The proof of orthogonality proceeds as follows:  Multiply 

the flux equation on the left by  j
*T
 and multiply the adjoint 

equation on the right by  i.  Subtraction of the two results 

gives the equation 

or, using vector inner-product notation, 

Hence, the orthogonality relationship is 

which is identical in form to the result obtained for the 

differential equations.  One should note that in the vector-

matrix case, M * = M T
 and L* = L T

, which is a result that could 

have been anticipated from the original operator definitions. 

 A diffusion theory computer code such as RAUMZEIT can be 

used to calculate the fundamental mode solution to the adjoint 

problem if we simply transpose our input data for each region.  

The D matrix of diffusion coefficients is diagonal, so it 

remains the same as before.  The H  matrix of absorption and 

group scattering transfer cross sections is not diagonal so we 

transpose the numbers directly.  The balance of the transposition 
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can be made by inserting the  f numbers where the input for   

is located and vice-versa.  The value obtained iteratively for 

the adjoint k eff
*  turns out to be the same value as is obtained for 

the regular flux solution, thus proving empirically that the two 

problems are mathematically related to one another.  However, the 

solution as a function of position will differ considerably from 

the corresponding flux solution, and it remains for us to find 

the physical significance of the adjoint. 

 Some computer codes, such as EXTERMINATOR, which solves the 

2D problem, will make the matrix transposition internally when 

the adjoint option is selected; these codes will save both the 

flux solution and the adjoint solution for subsequent use in a 

perturbation calculation.  Given some additional data, the code 

will calculate such core-averaged quantities as the reactivity, 

lifetime and effective delayed neutron fractions.  These topics 

will be discussed later. 

 The physical significance of the adjoint is as follows:  The 

adjoint is proportional to how important a neutron located at 

position r

 and having energy E (or lying in group g) is in 

sustaining the chain reaction.  This is tantamount to determining 

the likelihood that a given neutron will cause a fission reaction 

to take place.  Naturally, we cannot speak of a single neutron 

but only of the statistical properties of a large number of 

neutrons similarly situated.  A neutron located near the edge of 

the reactor has a good chance to leak out, so that it is not as 

important as a neutron in the center of the reactor.  A neutron 

located in a water region is not as important as one located in a 

fuel region (even if the flux is the same) because there is no 

uranium to cause fission.  A fast neutron in the fuel is not as 

important as a thermal neutron in the fuel because the cross 

section for fission is smaller.  And so on. 

 There is another way to explain the physical significance of 
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the adjoint.  Imagine that we have a critical reactor that has 

essentially no neutrons in it (after all, the critical state is 

just a balance between production and loss rates and is 

independent of the power level).  If we now insert a neutron at 

position r

 in group g, neutron multiplication will take place 

and a new flux distribution will be established.  One can think 

of the adjoint as being proportional to the eventual asymptotic 

power level reached by the reactor due to this neutron.  Putting 

the neutron near the edge will cause less multiplication than 

putting it in the center of the reactor, and hence the final 

power will be lower.  The argument proceeds exactly the same as 

given in the preceding paragraph. 

 We are led to a very significant concept:  the loss of a 

neutron has an importance to the chain reaction that varies with 

position and is independent of the neutron flux at the position. 

Hence, if we want to know the effect of a material change on the 

reactor we should really weight the corresponding reaction rate 

by its importance.  In other words, if δH  is a perturbed cross 

section matrix, then the local effect of adding δH  varies as the 

product  *
T
( r

) H  ( r


), and the total effect over the reactor 

varies as  *
T
( r

) H  ( r


)dr = a number. 

 

 

 7.3 First-Order Perturbation Theory 

 

 Consider the fundamental mode flux and adjoint equations in 

few-group operator form, 

together with the appropriate boundary conditions.  We now make a 

slight change in the reactor by, for example, dropping a coin 
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into the core.  The resulting neutron balance will correspond to 

a new eigenvalue problem having slightly different properties and 

a slightly different eigenvalue, namely, 

We could solve this problem directly by using a computer code 

such as RAUMZEIT, but we might not obtain a very accurate value 

for the reactivity effect because we would have to subtract two 

values of  O that are close together and the numerical error 

would be large.  Instead we use perturbation theory. 

 Let each of the terms in the perturbed balance be expanded 

as a small variation about the unperturbed term, i.e., let 

and 

Insert these values into the perturbed balance equation, multiply 

out the terms, and neglect the second-order terms that are 

products of the small variations.  The perturbed equation becomes 

(preserving matrix order), 

Expanding out and canceling second-order terms, we obtain 

The terms that are underlined can be neglected. 

 .M
1

  =  L
0




 


 (7.22) 

 

, +     =  

,M +  M  =  M 

,L  +  L  =  L













 

 

 . +  = 00        (7.23) 

 ).  +  )(M  +  M(  =  )  +  )(  +  )(L  +  L
000

(  (7.24) 

.M  +  M  +  M  +  M  =           

 

)L  +  L  +  L  +  L  +  L  +  L  +  L  +  L

00

000o000



0

(7.25) 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

249 

  

 To get the integrated effect on the core, multiply through 

by 
*T

0
 and integrate over volume.  Using the modified inner-

product notation, the result is 

One pair of terms with underbars drops out because of the 

weighted flux balance, while a second pair drops out because of 

the weighted adjoint balance.  These terms are of the form,    

and 

Note:  If the adjoint had not been used as the importance 

weighing function, then the latter terms would have remained in 

the equation making the perturbed   result depend upon the flux 

variation   itself.  When the adjoint is used, the perturbed   

depends to first-order only upon the change in material 

properties, L  and M .  This is significant, because it means 

that we do not have to calculate the perturbed flux to find the 

effect of the perturbation on the reactor. 

 Gathering the remaining three terms, we have an expression 

for the global effect known as reactivity   (or in this case the 

change in reactivity,  o).  Reactivity is defined as  

   (k - 1)/k and refers to the deviation in k from a just 

critical reactor with a multiplication factor of unity.  Hence, 
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Note that  / 0    as  0  1. 

 This is the kind of expression that is evaluated in few-

group diffusion theory codes such as EXTERMINATOR, where the 

computed flux and adjoint distributions are saved so that they 

can be used to perform the integrals for given values of  L and 

 M.  In words, the reactivity effect can be stated as 
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 Now that we have derived the general form of the expression 

for reactivity we must examine each individual term to see how it 

contributes.  We have two types of expressions to consider.  The 

first type appears when we consider fission, absorption, or 

scattering; the second type appears when we consider leakage. 

 As an example of the first expression, we have the form 

 

 

The second type of term, corresponding to leakage, is treated 

differently.  We first use the "first form" of Green's Theorem to 

obtain a symmetric term that is easier to compute numerically, 
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The surface integral is zero because the boundary conditions are 

either 

 Looking at the individual group-wise contributions, one can 

make the following general word statement: 
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Typical terms are as follows (numerator only): 

 

Absorption and Out-scatter-diagonal matrix elements, only 

one group affected. 
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           In-scatter leads to an increase in  . 
 

 
 Fission - two groups affected. 
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 Leakage-diagonal matrix elements, only one group affected, 

uses gradients. 
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 In the corresponding one-speed case, where the flux is self-

adjoint, we have the special reactivity expression, 

 

 

 7.4* Perturbation Effects on Higher Harmonic Modes 

 

 In the previous section, we computed the change in 

criticality of the fundamental mode of a reactor due to the 

presence of a material perturbation.  It should be fairly obvious 

that the same material change will also produce a change in the 

criticality of the higher harmonic modes, that is to say, the 

material change will alter the eigenvalue spectrum of the 
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reactor.  The derivation that we followed in the case of the 

fundamental mode is perfectly general and leads to identical 

expressions for the higher harmonic modes.  However, we denote 

the criticality change by the symbol  , namely, 

with the understanding that for the fundamental mode, the 

reactivity  0 =  0. 

 Refer for the moment to the one-speed case, which is 

illustrated in Figure 7.1.  The reactor equations are self-

adjoint in this instance so that the flux and the importance 

functions are identical.  One can easily see that a perturbation 

near the center of the core will have a maximum effect upon the 

fundamental mode because both the flux and the importance are 

near their maximum values, while it will have a minimum effect on 

the first harmonic mode because it is near a node point.  In 

fact, a symmetric perturbation, such as the removal of fuel from 

the center region of the reactor to flatten the power profile and 

give a more uniform fuel burnup, will cause a much larger 

decrease in the criticality of the fundamental mode than in the 

first harmonic mode.  The result is a net decrease in the 

fundamental-to-first-harmonic-mode eigenvalue difference, 

referred to as the eigenvalue separation,  

which implies that the modified core will be more susceptible to 

excitation of the harmonic modes during transient situations.  

The implications of this statement will be examined later. 
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 Fig. 7.1  Typical Fundamental and First-Harmonic Flux Modes 

 

 We return to the definition of reactivity.  If the reactor 

is critical initially and at steady state, then the reactivity 

perturbation serves as the driving function for the subsequent 

transient response of the system.  The global behavior of the 

system, i.e., the total reactor power, varies as a direct 

function of  0.  The higher harmonic modes contribute to the 

transient by inducing a change in the flux shape with time.  The 

amount of contribution turns out to be inversely proportional to 

the amount of sub-criticality of the harmonic mode in question 

(eigenvalue separation) and directly proportional to the 

excitation of the harmonic mode.  The excitation in turn is a 

reactivity expression of the type 

which indicates that the perturbed fundamental-mode-reaction-rate 

couples to the ith harmonic mode by virtue of the importance of 

that particular mode.  Excitation of a given mode can be avoided 
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by proper placement of the perturbation, e.g., symmetric 

perturbations will not excite the first harmonic mode of an 

initially symmetric system. 

 

 

 7.5 Control Rod Worth 

 

 Although first-order perturbation theory is only accurate 

when small changes in reactor parameters are considered, it can 

be used to give qualitative insight into the behavior of a 

control rod as a function of position in a reactor.  Consider, 

for example, the case of a single control rod of cross sectional 

area A and macroscopic cross section  ar that is to be inserted 

into a just critical bare cubical reactor 4a centimeters on a 

side which includes the extrapolation distance.  We assume that 

one-speed diffusion theory is applicable to this problem, and 

consider two separate cases:  (a) the control rod is located in 

the center of the x-y plane; and (b) the control rod is located 

at a distance a centimeters from the center in both the x and y 

directions.  The situation is pictured in Figure 7.2. 

 

 Fig. 7.2  Control Rod Insertion in a Bare Cubical Reactor 
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 In order to proceed we require the flux and adjoint 

solutions for the unrodded core.  Assuming spatial separability, 

the fundamental mode solution can be found by the methods 

discussed previously to be 

where the origin is taken at the center of the reactor.  Since 

the flux is self-adjoint in the one-speed case,  * =  , and the 

reactivity worth of any perturbation in the initially critical 

(keff =  0 = 1) core is given by Eq. (7.34). 

 If one considers that the control rod region has a very 

small volume, which is initially empty, one can obtain a 

reasonably accurate analytical approximation for both the 

numerator and the denominator of the reactivity expression.  In 

the denominator, if one ignores the small empty region, the  

integral becomes 

In the numerator,  M = 0 and the x-y integral simplifies to the 

product of  L and the flux at the x and y positions times the 

cross sectional area A.  For the fully inserted central control 

rod (case a), we obtain the expression 

For the fully inserted rod located at x = a; y = a (case b), we 

have 
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 The control rod in case (b) is only worth 1/4 as much as the 

central control rod.  In other words, it would take four control 

rods in the outer positions to equal one control rod in the 

center of the core.  The total reactivity worth of the central 

control rod is 

 The relative integral control rod worth as a function of 

control rod depth p in either case is given by the expression 

 

The relative integral control rod worth curve is a sigmoid as 

shown in Figure 7.3.  The control rod has its maximum worth per 

centimeter of insertion at the center of the core, as seen by 

taking the derivative of the above expression to obtain 

 

which has its maximum at p = 2a. 

 

A.C 
2

a
 -  =             

)
4

( )
4

(dz  )
4a

z
(  AC -    )L- ,(

ar
2

222
+2a

2a-
ar

2



 


 coscoscos

 (7.40) 

 .
a4

A - 
  =  

C)(2a

AaC2 -
    4a)=p(0,0,

f
2

ar

f
23

ar
2











  (7.41) 

 

. 
2

2a

p

  -  
4a

p
  =   

2

)
2a

p
  -  (1

  -  
4a

p
  =

dz )
4a

z
( 

dz )
4a

z
( 

  =  
4a)=py,(x,

p)y,(x,
    R(p)

2
2a

2a-

2
2a

p-2a

















sinsin

cos

cos






 (7.42) 

 ),
2a

p
  -  (1 

4a

1
  =  

dp

dR 
cos  (7.43) 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

258 

  

 

 Fig 7.3  Relative Control Rod Worth vs. Depth 

 

 Although the above results are qualitatively correct, they 

are inaccurate for at least two different reasons.  First, the 

change in cross sections, represented by  L, is not small; 

neither are the variations in the flux,   , and the adjoint, 

  *.  Hence, perturbation theory is not accurate to first order. 

As a matter of fact, diffusion theory itself is not accurate in 

the vicinity of the control rods.  Second, the flux in a real 

reactor is generally not separable; the repositioning of a 

control rod usually leads to a flux tilt whose magnitude depends 

upon the relative excitations of the harmonic flux modes, i.e., 

the eigenvalue separations.  This leads to what is known as a 

control-rod-interaction effect, where the worth of a given 

control rod depends upon the position of the other control rods. 

Nevertheless, actual control rod worth curves look remarkably 

similar to the curve pictured in Figure 7.3. 

 Perhaps the most practical way to obtain the relative 

control rod worth curves for a given reactor model is to perform 

a series of three-dimensional few-group diffusion theory 

calculations, using a code such as VENTURE or 3DB.  We use 

"effective" control rod cross sections, and place the control 

rods in varying positions.  The flux tilt is automatically 
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included and the reactivity worths can be obtained by subtraction 

of the keff values according to the equation 

where keff 0 is for the unrodded core. 

 

 

 7.6* Inhomogeneous Case 

  

 The inhomogeneous problem has a slightly different 

formulation than the homogeneous eigenvalue problem, but has a 

significantly different physical interpretation.  In its simplest 

form, usually applied where there is no fission contribution, the 

flux problem is of the operator form, 

The flux   at any position in space r

 at any energy E is driven 

by the source distribution S, and is affected by the loss 

operator L.  Usually the source is a point source located 

somewhere in space, or is uniform over a small localized spatial 

region. 

 We can write a corresponding inhomogeneous adjoint equation 

of the form 

where L* is derived from L as in Eq. (7.11).  The adjoint source 

R is usually taken equal to a detector activation cross section 

or to a radiation dose conversion factor.  The detector is also 

usually localized in space at some considerable distance away 

from the source.  We can interpret  * as being proportional to 

the contribution to the detection or dose rate in the detector of 

 . 
k k

k  -  k
  =  

0 effeff

0 effeff
  (7.44) 

 E).,rS( = E),r


  (L  (7.45) 

 E),,rR( = E),r
**


  (L   (7.46) 
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neutrons of any energy E located at any local position r

 in 

space.  It is a detection "importance".   

 First, multiply Eq. (7.45) by  *, multiply Eq. (7.46) by  , 

and integrate over all space.  Assume that the external boundary 

conditions on both   and  * are either zero flux or symmetry.  

In "kets" notation, the results are 

and 

If we subtract Eq. (7.48) from Eq. (7.47), and use the definition 

of L*, we obtain  
 

         meector voludet  volumesource
* > R,<  =  > S,<    = Dose Rate.        (7.49) 

                  

 This result states that we can determine the dose or 

detection rate either by knowing the flux at the detector or by 

knowing the importance at the source!  In many cases, it is 

difficult to determine either of these quantities accurately at 

the position of the other because of computational and 

geometrical limitations.  However, this mathematical result gives 

rise to a possible hybrid method where both problems are solved 

separately by appropriate means over a portion of the phase space 

where they can be computed accurately; then the results are 

coupled together at a suitable interface. 

 Consider the schematic situation shown in Figure 7.4.  As 

before, weight Eq. (7.45) by  * and Eq. (7.46) by  .  This time, 

however, integrate over only a portion of the space up to the 

coupling surface, including the detector but excluding the 

source.  When the resulting equations are subtracted there will 

be no direct contribution from the source, but there will be a 

surface integral representing its effect.  The result comes from 

 >, S,<  =  >L ,< 
**

 (7.47) 

 .> R,<  =  >L ,< 
**  (7.48) 
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a direct application of the second form of Green's theorem, where 

n  is the unit outward normal to the surface: 

 

 Figure 7.4  Idealized Point Source and Detector 

 

 In words, Eq. (7.50) states that the dose rate is equal to 

the sum of the flux weighted adjoint current leaving the volume 

across the surface and the adjoint weighted neutron current 

entering the volume across the surface.  Both of these terms may 

be rather accurately computed at the coupling surface, and 

therefore the dose rate is accurately determined.  Application of 

the chain rule provides a computationally more convenient form,  

  

 The hybrid method in its transport theory form has been 

successfully used in complex radiation shielding calculations, 

where the forward solution of the source problem has been 

obtained from the deterministic Sn code DORT, and the adjoint 

 

  . dEdS n
**max


  }D  -  D{   =

 

                    

> R,<  =  Rate Dose

E

0

volume

detector

  



 (7.50) 

  dE.dS n
*max


  D  =  rate Dose

outward

E

0
    (7.51) 
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solution has been obtained from the stochastic Monte Carlo code 

MORSE.  The resulting combination is known as the MASH code.  The 

basic ideas, however, are applicable to any problem where 

geometrical difficulties preclude the full solution of the 

problem by a forward flux solution alone. 

 

 

 Problems 

 

7.1 Refer to Problem 6.l and its numerical solution.  Do the 

following additional steps: 

 

       a) Transpose the given L and M  matrices as 

described in Section 7.2, and calculate the 

adjoint group fluxes for the cylindrical UVAR 

reactor model using an available one-dimensional 

computer program; 

b) Compare the keff values obtained in the two 

cases; 

       c) Plot the relative adjoint group fluxes as a 

function of position, and compare them to the 

regular fluxes; 

       d) Plot the product  g g* for both the fast and 

thermal groups as a function of position in the 

core; 

e) Comment on where you think a given control rod 

should be placed to be most effective. 

 

7.2 You are given a critical symmetric slab reactor that has a 

water region between the fuel regions, as shown below. 
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 If the flux goes to zero at x = ± c and is describable using 

two groups, do the following: 

     a) Sketch the fast and thermal flux distributions 

that you might expect to find in this reactor and 

explain the physical reasons for the magnitudes 

observed if the water is 10 cm thick. 

  b) Sketch the corresponding fast and thermal adjoint 

distributions and explain the physical reasons for 

the magnitudes observed. 

c)   How would the results change if the water region 

were 20 centimeters thick? 

 

7.3* This problem concerns the lambda-mode eigenvalues and 

corresponding few-group eigenvectors.  Do the following: 

 

  a) Write down the general balance equation for the 

ith harmonic flux mode together with the 

appropriate boundary conditions; explain the 

terms. 

  b) Write down the corresponding general balance 

equation for the ith harmonic adjoint mode 

together with the appropriate boundary conditions; 

explain the terms. 

  c) Discuss the properties of the above equations. 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

264 

  

d) List as many instances as you can think of 

where the harmonic modes come into play and 

discuss each one fully. 

 

7.4 You are given a bare, spherical, homogeneous reactor 

describable by one-group diffusion theory.  The boundary 

conditions are the following:  (1) the flux is zero at the 

outer radius, r = R; and (2) the flux is finite and 

symmetric at the center, r = 0.  What is the relative 

reactivity worth of a small perturbation, for example a 

boron-filled bee-bee placed at r = R/2 compared to the same 

bee-bee placed at r = R/4? 

 

 

7.5 The UVAR is a 2MW swimming pool reactor.  If a visitor 

dropped a nickel into the pool and it slowly fell through 

the water and thence into the center of the critical core, 

what would be the approximate reactivity worth of the nickel 

(in cents) as a function of position?  1$ = 0.007 for UVAR. 

Assume that a nickel weighs 5 g and is made entirely of 

nickel which has a macroscopic absorption cross section of 

 an = 0.42 cm
-l
.  Assume that the UVAR can be adequately 
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described by one-group diffusion theory as a homogeneous 

spherical reactor with a radius of R = 26 cm surrounded by 

an infinite water reflector.  Take the macroscopic 

absorption cross section of the core to be  ac = 0.091 cm
-l
, 

and the diffusion coefficient to be Dc = 0.192 cm.  Use an 

effective Lc
2
 = 52 cm

2
.  Take the macroscopic absorption 

cross section of the water to be  aw = 0.0196 cm
-l
, and the 

diffusion coefficient to be DW = 0.146 cm. 

 

7.6* This is a control rod interaction study.  You are given the 

following 2D reactor model in RZ geometry, which can be 

solved using a computer code such as EXTERMINATOR. 

 

 The control rods are one mesh space wide.  Take 2" mesh 

spacing in the r direction in the fuel and 1" in the outer 

reflector.  Take 4" mesh spacing in the z direction in the 

fuel and 1" in the end reflectors.  If you have the 

possibility, use more but smaller mesh spaces to obtain more 

accurate results.  Note that most codes accept the mesh 

spacing in centimeters.  Use   = 10-3 for the point-wise 

flux convergence or 10
-5
 for the keff convergence.  Since 

this is effectively a 3D problem use the 2 group cross 

sections given below with B
2
 = 0: 
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  a) Find the control rod worth of the central control 

rod given that the outer rod is at 1/2 depth.  

Plot the integral rod worth curve.  Also, 

calculate the total worth of the central rod 

without the outer rod, and the corresponding 

adjoint flux.  Plot the flux traverse above and 

below the rod tip (three or four inches). 

  b) Find the control rod worth of the outer control 

rod given that the central rod is at 1/2 depth.  

Plot the integral rod worth curve. Also, calculate 

the total worth of the outer rod without the 

central rod, and the corresponding adjoint flux.  

Plot the flux traverse above and below the rod tip 

(three or four inches) 

  c) Comment on the differences between the results of 

parts a) and b). 

 

 Material Properties 

Fuel Water Control Rod 

       D1  = 1.2 

       D2  = 0.225 

  sl2  = 0.05 

     al = 0.005 

     a2 = 0.10 

       fl = 0.005 

       f2 = 0.115 

      1 = 1. 

      2 = 0. 

      D1 = 1.4 

      D2 = 0.16 

   sl2  = 0.06 

   al = 0.0002 

   a2 = 0.02 

         - 

         -     

        D1 = 4.0 

        D2 = 0.10 

  sl2  = 0.10 

     al = 0 

     a2 = 2.0 

           - 

           - 
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 CHAPTER 8 
 

 

REACTOR KINETICS 
 
 
 

 When we speak of reactor kinetics, we usually refer to the 

short-time scale (seconds) behavior of a reactor in the absence 

of feedback other than delayed neutrons.  This type of behavior 

would be typical of a reactor initially operating at a steady low 

power level that is perturbed by the movement of a control rod.  

Reactor dynamics, on the other hand, refers to the general case 

where feedback mechanisms such as temperature and pressure 

changes come into play.  We treat reactor dynamics in Chapter 9. 

 As a first step, we derive the time-dependent neutron 

balance equations in few-group diffusion theory form.  We see 

that these equations can, in principle, be solved numerically to 

obtain the complete transient solution as a function of space and 

time.  While this approach is computationally feasible, the 

general nature of the transient response is not easily seen. 

 To make the problem more understandable, we must reduce the 

neutron balance equations to a form that is essentially 

independent of space.  We accomplish this by weighting the 

balance equations by a suitable (adjoint) function and 

integrating over space.  The resulting equations are known as the 

point kinetics equations because they represent an "effective" 

point reactor in which the time behavior at all positions is 

identical.  In the process, we lose the direct physical meanings 

of the parameters; they become "effective" as well.  But we gain 

the ability to solve the resulting time-dependent equations 

analytically using integrating factors, Laplace transforms or 

matrix techniques.  The solutions thus obtained tell us a great 

deal about the kinetic behavior of reactors. 

 We conclude the Chapter with a perturbation theory 

derivation of the point kinetics equations.  This derivation 
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gives us insight into the conditions under which point kinetics 

are valid, and shows us the proper way to calculate the various 

effective parameters needed in the model. 

 

 

 8.1  Multigroup Reactor Kinetics Equations 

 

 When we consider the dynamic behavior of a low-power reactor 

in the absence of feedback effects, we must remember that the 

steady state neutron balance includes both the prompt neutrons 

given off at the moment of fission and the delayed neutrons given 

off during the decay of the delayed neutron precursor atoms.  

Therefore, it is not sufficient to just add a time derivative 

term to the neutron balance equation; the time-dependent 

precursor balances must also be considered.  The equations, in 

fact, are coupled together and must be solved simultaneously. 

 Recall that there are numerous (> 100) fission products that 

can lead to delayed neutron emission, and that the exact mixture 

for a given fissionable isotope is a function of the fission 

product yield curve for that particular isotope.  Fortunately, 

the net effect of all precursors can be adequately represented by 

six effective "groups" of precursors whose half-lives vary from 

approximately 55 s down to about 0.25 s.  These are given in 

Table 8.1 for the thermal neutron fission of 
233
U, 

235
U and 

239
Pu.  

The relative yields and half-lives were obtained by "least 

squares" fits of experimental data. 

 The delayed neutrons are also born at a lower energy than 

the prompt neutrons.  As discussed previously, each delayed 

neutron is emitted at a discrete energy, but because a delayed 

neutron group is made up of several different contributions, each 

group has an effective neutron emission spectrum.  The average 

energies for the delayed neutron groups of 
235
U are given in Table 

8.2. 

 For uranium-235, the delayed neutron fraction is   = 
6
=1i  i 

= 0.0065.  This means that the fraction (1 -  ) of the total 
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fission neutron production is prompt, and that the fraction  i 

of the total fission neutron production is delayed in the ith 

precursor group. 

 

 Table 8.1 

 Delayed Neutron Data for Thermal Fission of 
233
U, 

235
U, and 

239
Pu 
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Table 8.2 

 Mean Energies of the Delayed Neutron Groups for 
235
U Fission 

Group 
E (keV) 

1 
2 
3 
4 
5 
6 

399 ± 7 
428 ± 9 
439 ± 9 
516 ± 9 
502 ± 9 

 454 ± 10 

 
    M.F. Villani et al., NSE 111, p422 - 432 (1992) 

 

 We shall write the precursor balance equations for the six 

precursor groups at position r

 in the reactor.  These are simply 

In this equation,  f( r

,E',t)φ( r


,E',t) is the fission rate at 

position r

 for neutrons of energy E', and  i  is the fractional 

production of precursor atoms which emit a single delayed neutron 

per decay.  We must integrate over all energies to obtain the 

total precursor production rate at time t at point r

.  This 

equation is only valid if the precursors stay at the position 

where they are born (no circulating fuel solutions or slurries). 

 The neutron balance now contains both prompt-contributions 

from fission and delayed-contributions from the decay of 

precursor atoms.  For the purpose of this treatment we will use 

diffusion theory although the transport equation will lead to the 

same form of the "point" reactor kinetics equations.  The neutron 

balance is 

 

            1,6.  =  ifor  

 

t );,r(C  -  dE' t ),E,r(t ),E,r(   =

 

decay             rate production

               fission   

t

t ),r
iifi0




 


 (C

 

precursors of

change of rate

i

 (8.1) 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

273 

  

or the equation: 

The terms are defined as follows: 

 

(1 -  )  f( r

,E') ( r


,E') is the production of prompt 

neutrons alone, since the fraction   

are delayed and must be subtracted out. 

We integrate over all energies to obtain 

the total prompt production; 

 

        p(E)  is the prompt neutron spectrum, usually 

taken to be the fission spectrum, which 

differs somewhat for different 

fissionable isotopes; 

 ,
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 di(E) is the delayed neutron spectrum for the 

ith group, which is lower in average 

energy than the prompt spectrum.  For 

lower emission energies, the probability 

of leakage before the neutron 

thermalizes is smaller than for fission 

neutrons, thus giving the delayed 

neutrons a relatively higher survival 

probability. 

 

 Multigroup Equations.  We next usually discretize the energy 

range into energy groups.  As we have seen previously, the 

scattering integral leads to group transfer cross sections.  A 

typical group flux equation (for single-group down-scatter only) 

is the equation 

The precursor equations, in turn, are 
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We also have appropriate boundary and initial conditions. 

 As before, we now write all of the multi-group equations in 

a single vector-matrix equation.  First we define the following 

vectors and matrices: 

 

.

-

0

)+(-

00)+(

  H   ; 
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3s2a22s1
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.

.

.

.
 

 

The matrices D  and T  are diagonal, while the matrix H  has 

elements on the diagonal and contains at least a row of terms 

just below the diagonal when there is down-scatter only.  This is 

the same DEAF  -type notation that we have encountered previously 

for the static multi-group case, with the addition of the prompt 

and delayed spectrum vectors and the inverse neutron velocity 

matrix. 
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 With the above definitions, the multi-group kinetics 

equations can be written as follows: 

and 

Of course, in order to solve these equations we need boundary 

conditions and initial conditions.  The boundary conditions are 

usually 

while initial conditions are usually 

and 

 

Note that we have obtained a coupled set of six precursor and G 

flux equations that must be solved simultaneously.  By making a 

finite difference approximation in one or more space dimensions 

and time, these equations can be solved numerically, e.g., by the 

RAUMZEIT code. 

 

 

 8.2 Interpretation of Spatial Kinetics Results 

 

 Using the multi-group reactor kinetics equations we can 
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calculate the time-dependent behavior of a reactor during a 

transient situation.  Several few-group diffusion theory codes 

exist which can be used for this purpose such as WIGLE, RAUMZEIT, 

TWIGLE, HEXNODYN, etc.  As an example, we consider a control rod 

insertion transient.  The overall space-time behavior is a 

superposition of an overall magnitude change and a spatial flux 

change or "tilt."  Two such computational results are 

qualitatively plotted in Figure 8.1 for a one-dimensional model 

where the control rod is being inserted on the right-hand side of 

the core.  The positions x1 and x2 represent the locations of 

neutron flux monitors such as ionization chambers. 

 In case (a), the flux shape remains relatively unchanged but 

the magnitude decreases greatly.  In case (b), both the flux 

shape and the magnitude change.  In order to interpret these 

results more fully we plot the time-dependent readings of the two 

detectors, normalized to their respective initial readings.  

These are shown in Figure 8.2.  For the reactor model described 

by case (a), the flux shape does not vary appreciably with time. 

Space and time are essentially separable and the reactor behaves 

as a single unit.  We call this behavior "point kinetics."  On 

the other hand, in case (b) the flux shape tilts appreciably to 

the left in a direction away from the neutron absorbing control 

rod.  Space and time are clearly not separable and the behavior 

must be described by "spatial kinetics." 

 In the latter case, the most useful method of presentation 

of the results is in the form of a global amplitude function vs. 

time and a normalized shape function vs. position at several 

different times.  The amplitude function is taken to be the total 

power normalized to unit total power, i.e., the area under the 

curve is constant.   
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 Fig. 8.1  Time-Dependent Thermal Flux vs. Position 

 

 

 Fig. 8.2  Normalized Detector Reading vs. Time 

 

 These are shown in Figure 8.3.  The time-dependent amplitude 

function can be related to the reactivity inserted into the 

reactor through the Inhour Equation that will be discussed later. 

The extent of the shape change is a measure of the susceptibility 

of the reactor to excitation of the harmonic flux modes. 
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 We visualize the transient behavior of the reactor 

qualitatively as being a linear combination of harmonic mode 

solutions of the form 

 

 

 Fig. 8.3  Transient Amplitude and Shape Functions 

 

Without going through an actual derivation, we can state that the 

coefficients of the higher harmonic modes, a1(t), a2(t), etc., 

consist of two main factors: 

 

1. the susceptibility of the reactor to a flux tilt, which 

varies as the reciprocal of the difference in the 

eigenvalues, i.e., 1/( 0 -  i), for i = 1,2...; 

 

 2. the reactivity excitation of the harmonic mode,  i, 

which depends upon where the perturbation is inserted. 

The excitation is minimal if the perturbation is 

inserted at a spatial node, or zero crossing, of the 

harmonic mode in question. 

 

 As a reactor core becomes larger, all else being equal, the 

 ....+  (r)(t)a  +  (r)(t)a  +  (r) (t)a  =  t)r,
221100 (  (8.7) 
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harmonic modes become less and less sub-critical and the 

eigenvalue differences become smaller; the susceptibility of the 

reactor to a flux tilt increases.  On the other hand, in order to 

strongly excite the first harmonic mode, we must make an off-

center perturbation.  In this regard symmetrically placed 

perturbations will lead to minimum flux tilts by virtue of 

balancing effects.  Control rods are always operated in symmetric 

banks in commercial power reactors for just this reason. 

 

 

 8.3  Point Kinetics Equations 

 

 Consider the various terms present in Eqs. (8.3) and (8.4). 

The important dynamically varying terms are the flux and the 

precursor concentrations.  Their analogs in the point kinetics 

equations are the effective neutron density, n, and the effective 

precursor concentrations, ci.  The inhomogeneous source term is 

replaced with an effective source, q.  The delayed neutron 

fractions,  i, enter as effective delayed fractions,  i.  All of 

the production and loss terms combine to become an effective 

reactivity,  .  And finally, the 1/v term combines with the 

fission production term to give the effective time to generate a 

new neutron,  .  As a matter of fact, the only quantities that 

retain their physical meanings are the decay constants,  i. The 

point kinetics equations are written as 

and 

In this form, to complete the problem statement we need only the 

 q,  +  c  +  n
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  =  
dt
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initial conditions 

 We have obtained a coupled set of seven time dependent 

equations.  We can write the set in vector-matrix form.  Let the 

following terms be defined: 

With these definitions, the entire set of equations becomes the 

inhomogeneous first-order vector-matrix ordinary differential 

equation 

with the initial condition N o.  If the matrix B  is not a 

 1,6.  =  i  for   ,c  =  (0)c   and   n  =  n(0) ii 00
  

 

. 

c

c

n

= N    ; 

0

0

q

= S

 

 

 

;

-

00000-

-

  B   ;

c

c

c

n

  N                           

60

10

0

0

6
6

1
1

6321

6

2

1

































































































































.

.

.

.

    

.

.

.

.

  

..

..

..

..

..

    

.

.

.  










 

 

 ,S  +  NB  =  N  (8.10) 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

282 

  

function of time, then this equation has constant coefficients 

and its solution is given as a sum of exponentials.  The 

constants in the exponentials are the eigenvalues of the B  

matrix, which are the roots of the characteristic equation.  On 

the other hand when the matrix B  is time dependent, the 

differential equation has time varying coefficients and the 

solutions are not exponentials.  Looking at the B  matrix we see 

that the only factor present that is sensibly time dependent is 

the reactivity  .  Hence simple analytic solutions are only 

obtainable for step changes in reactivity, that is to say, for 

the case of an instantaneous change in reactivity from   = 0 to 

  = constant. 

 The general solution of the point kinetics equations for a 

constant step reactivity insertion is given in terms of the 

eigenvalues of the B  matrix, which are obtained by setting the 

determinant |B  -  I | = 0.  The result is called the 

characteristic equation of the matrix; in this particular case it 

is a seventh-order algebraic equation in the parameter ω that can 

be solved for  0,  1, ...,  6.  The equation is normally written 

in the form 

In this form it is called the Inhour equation. 

 An identical result is obtained if exponential solutions are 

assumed of the form 

Upon substitution into the original set of ordinary differential 

equations and cancellation of the common exponential factor, the 

resulting algebraic equations can be combined into the Inhour 

equation.  Similar results are obtained using Laplace transforms. 

 .
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 The resulting neutron density solution is a sum over the 

homogeneous solutions plus the particular solution, and takes the 

form 

The corresponding precursor solutions are of the form 

However, the coefficients Aij are not independent of the 

coefficients Aj because they are related by the initial balance 

or equilibrium situation.  The particular solutions arise as a 

result of the inhomogeneous source term in the balance equations. 

 A much more elegant solution form can be obtained by 

applying an integrating factor directly to the inhomogeneous 

vector-matrix differential equation.  For   = constant, the 

complete solution can be written in the form 

 

The factor exp(B t) is itself a matrix that can be expressed 

directly in terms of the eigenvalues ( j) of the B  matrix.  One 

uses Sylvester's theorem, which in this particular case gives 

Hence, one can solve the entire problem in a straightforward 

mechanistic manner.   

 We return now to the characteristic roots of the Inhour 

 .n  +  eA  = n(t) particular
t

j

6
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equation.  For positive  , one of the roots will be positive and 

the other six negative; for negative  , all of the roots are 

negative.  In fact, it can be shown that the values of   form 

the sequence 

and are bounded by the decay constants of the delayed neutron 

groups according to the following inequalities: 

 

A qualitative (not to scale) plot of the Inhour equation appears 

in Figure 8.4. 

 For either positive or negative reactivity, after sufficient 

time has passed, the solutions corresponding to  1, ...  6 will 

have decayed away leaving a persisting asymptotic solution that 

is proportional to e
t o .  This asymptotic solution can be measured 

easily, for example, by plotting the reactor flux vs. time on 

semi-logarithmic paper and taking the slope of the curve at large 

values of t.   
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 Fig. 8.4  General plot of   vs.   

 

 The reciprocal of the slope is known as the reactor period 

and is given by the expression 

A qualitative plot of the neutron density vs. time for the same 

amount of positive and negative reactivity insertion for  

   <   is given in Figure 8.5.  Two observations can be made. 

First, the solutions for  1, ...  6 die out rather quickly 

giving rise to what appears to be an initial jump in the neutron 

density.  Second, the period for a given positive reactivity 

insertion, i.e., for the removal of a control rod, is invariably 

shorter than the period obtained for an equal but opposite 

action.  In other words, it is easier to increase reactor power 

as a function of time than it is to decrease it. 

 .
1

  =  T
0
 (8.16) 
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 Fig. 8.5 Neutron Density vs. Time for    <   

 

 There are several special cases of interest.  For example, 

when   is very small, the asymptotic period is very large and  0 

<<  i.  In addition, since   is usually of the order of 10-3 

to l0
-6
 s,   << )./( ii

6

=1i    Hence, 

The response in this case is governed entirely by the precursors. 

On the other hand, when   is large and positive, the period is 

very short and  0 >>  i.  In this case 

The response in this case is governed entirely by the prompt 

neutrons.  Finally, when   is negative and very large 

algebraically, the value of  0  - 1 , which is the decay 

constant of the longest-lived precursor group.  The corresponding 

maximum negative asymptotic period is T  80 s. 

 .  < <  ||   for          

i

i
6

=1i

0 










  (8.17) 

 .  >     for     
  -   

    0 





  (8.18) 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

287 

  

 The value of   =   is the transition point between a 

kinetic behavior dominated by delayed neutrons and one dominated 

by prompt neutrons.  When   <   , but positive, the reactor is 

said to be "delayed critical," while when   >   the reactor is 

said to be "prompt critical," which is usually considered to be a 

hazardous situation, sometimes called an excursion. 

 

 

 8.4  Results for One Group of Delayed Neutrons 

 

 Since the transient behavior of a perturbed reactor system 

depends upon both the prompt neutrons and the delayed neutrons, 

the simplest approximation to the point kinetics equations that 

still retains the correct qualitative behavior consists of using 

one average group of delayed neutrons.  In this case, the 

equations become tractable without the use of the powerful 

vector-matrix methods. 

 We write the source-free point kinetics equations with one 

equivalent group of delayed neutrons as 

 

and 

where n(0) = n0 and c(0) = c0.  We apply the method of Laplace 

transforms to solve these coupled ordinary differential 

equations.  Specifically, taking transforms we obtain the 

equivalent representation in terms of the transform variable s, 

namely, 

 c  +  n
  -   

  =  
dt

dn





 (8.19) 
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and 

These are two coupled algebraic equations in the transformed 

variables that explicitly contain the initial conditions.  

Solving the latter equation for c (s) in terms of n (s), and 

substituting this value into the former, leads to the expression 

 In order to find the inverse Laplace transform of this 

expression, i.e., the solution as a function of time, we must set 

the denominator equal to zero to find the poles of the equation. 

This characteristic equation can be manipulated into the 

following form, 

which is recognized to be the Inhour equation for one group of 

delayed neutrons.  Further manipulation gives a quadratic form 

for the two roots of the equation, namely, 

 In the usual situation, where    <  , the following 

inequality is valid, namely, 

 (s)c  +  (s)n
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Under these conditions, we can use the approximation   +  1   

 1 +  /2, for   << 1.  The two roots are approximately 

and the transform takes the form 

 

 Positive Step Change in Reactivity from Steady State.  To 

proceed further, one needs to specify the initial conditions more 

fully.  One possible situation is the addition of a positive step 

of reactivity,   <  , to a system that is initially at steady 

state with a neutron density n0.  In this case, the precursors 

are in equilibrium initially with the neutron density so that, 

setting dc/dtt = 0 = 0, we obtain the relationship 

Hence, the transform takes the form 

to the same approximation given above. 

 The corresponding time-dependent solution is therefore 

simply 

This solution is plotted in Figure 8.6.  The prompt neutron 
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behavior, which varies as exp -[(   -  )/ ]t, is seen to give 

rise to a short, decaying transient.  This is reasonable on 

physical grounds because the reactor is sub-critical with respect 

to prompt neutrons alone.   

 

 

Fig. 8.6  Transient Neutron Density After a Step Change in  

          Reactivity 

 

 After the prompt transient has died out, the solution 

behaves as though only the slow positive component was present.  

The apparent initial fractional change in the neutron density, 

  /(   -  ), is known as the "prompt jump."  Since a positive 

reactivity worth of   =   represents the transition from a 

behavior dependent upon delayed neutrons to a behavior dependent 

upon prompt neutrons, the reactivity unit commonly used is called 

dollars, defined as 

 

In this regard the prompt jump can also be written in the form 

 .     $ 
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1/(1 - $).  Note that the dollar unit is a function of reactor 

type and reactor fuel through the quantity  .  Reactors having 

different fuels behave similarly for the same reactivity 

insertions in dollars. Operating reactivity insertions are 

usually kept in the range of cents, where a cent is one-hundredth 

of a dollar.  There is of course, no prompt jump at all if   > 

  because the reactor is then critical or supercritical on 

prompt neutrons alone; the neutron density would increase very 

rapidly with time, governed by the time scale of the neutron 

generation time. 

 

 The Prompt-Jump Approximation.  The complete set of point 

reactor kinetics equations is somewhat cumbersome to solve 

numerically because these equations contain widely differing time 

constants.  Equations of this type are said to be "stiff," and 

accuracy can usually be obtained only by using time steps that 

are comparable to the shortest time constant in the system.  As 

we have seen, six of the equations have large time constants 

corresponding to the delayed neutron half-lives while the seventh 

has a short time constant which corresponds to the generation 

time  .  This latter equation gives rise to the short-time-scale 

transient behavior and the prompt jump. 

 If we are primarily interested in the long-term solution of 

the reactor kinetics equations for slow variations of reactivity 

and for   <  , we can eliminate the stiffness in the equations 

by neglecting the prompt solution.  Formally, we neglect the term 

 (dn/dt) in the set of equations, which reduces the order of the 

system by one and gives an algebraic equation coupling n(t) and 

the ci(t).  This is called the "prompt-jump approximation."  This 

approximation can also be made in the space-dependent kinetics 

formulation if desired. 

 For the example given in the previous section, neglecting 
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 (dn/dt) gives a first-order differential equation whose 

solution is 

This is seen to be identical to the first term in the complete 

solution.  Information on the initial transient is completely 

lost.  However, the solution as given is accurate over the long 

term. 

 When numerical solutions are to be calculated, say for a 

slowly varying  (t), the time steps used in this case could be 

rather large.  This is quite an economical situation when the 

reactor kinetics equations are to be solved simultaneously with 

fluid flow and heat transfer equations, for example in a pump 

flow-coast-down transient calculation.  Such calculations are 

often done in the safety analysis of a large PWR or BWR to ensure 

that the design is adequate to withstand normally expected 

transient situations such as a pump circuit-breaker trip. 

 

 Constant Source Problem.  We now consider the case of a 

sub-critical reactor that contains a steady source of neutrons, 

e.g., a Pu-Be source.  The point kinetics equations for one 

delayed neutron precursor group are 

and 

Since these equations are inhomogeneous, they admit particular 

solutions.  Furthermore, since the system is sub-critical, all of 

the homogeneous solutions have negative exponentials, which means 

 t.
  -    -  

n   n(t) 
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that they die out with time.  Hence, in the steady state, only 

the particular solutions are important. 

 In this particular case, we guess that the particular 

solutions will be constants, which correspond to the situation 

where the neutrons supplied by the source and any subsequent 

neutron multiplication just equal the total neutron destruction 

rate.  Substitution of constants into the differential equations 

gives the solutions 

which are both positive because the reactivity is negative. 

 

 

 8.5  Experimental Measurement of Control Rod Worth 

 

 There are a number of ways to experimentally measure the 

worth of control rods in a reactor, all of which are based upon 

the ideas presented in this chapter.  Detailed descriptions of 

these methods are beyond the scope of this treatment; only a 

brief outline of the basic principles will be given.  The 

commonly used methods are: 

 

 1. Rod Bump.  The reactor is initially critical.  A 

control rod is withdrawn a small amount and the 

asymptotic reactor period is measured by taking the 

slope of the measured n(t) vs. t curve, as plotted on 

semi-logarithmic paper.  The corresponding reactivity 

is computed from the Inhour equation.  The reactor is 

returned to critical by addition of a compensatory 

reactivity, e.g., boric acid is added to the coolant, 

and the process is repeated.  This method is commonly 

used to calibrate control rods in a reactor. 

 ,
q

-  = (t)c       and      
q

-  = (t)n pp
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 2. Sub-critical Multiplication.  The reactor is initially 

sub-critical with a source present, and the neutron 

density at any position in the reactor is inversely 

proportional to the reactivity.  The relative 

reactivity worth of a control rod at any position in 

the core is related to the reactivity worth of the 

initial configuration by the ratio of the count rates 

obtained by a given neutron detector in the two cases. 

Specifically, if CR represents count rate, 

  Of course, the initial reactivity,  initial, must be 

measured by an auxiliary means. 

 

 3. Source Jerk.  The reactor is initially sub-critical 

with a neutron source present, and a steady state 

neutron density is attained.  The neutron density 

magnitude is measured using a neutron detector.  At  

t = 0, the source is jerked out of the core, initiating 

a transient downward neutron flux variation.  The 

reactivity worth of the system is measured from the 

ratio of the count rates before and after the source 

removal using the prompt-jump expression, i.e., 

 

4. Rod Drop.  The reactor is initially critical.  At  

t = 0, the control rod is allowed to fall by gravity to 

its fully inserted position.  As in the source-jerk 

experiment the reactivity is implied from a ratio of 

detector count rates using the prompt-jump expression. 

 . 
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 5. Pulsed Neutron Source.  The reactor is either critical 

or sub-critical.  Neutrons are injected into the system 

by a pulsed neutron generator such as a Cockcroft-

Walton accelerator, which uses a deuterium or tritium 

target and an accelerated deuteron beam.  Since the 

reactor is prompt sub-critical, the neutron flux as 

measured by a detector will decay on a short-time scale 

as exp[-(   -  )t/Λ].  Measurement of the slope of the 

decay curve vs. time plotted on semi-logarithmic paper, 

allows calculation of the reactivity.  Similar results 

can be obtained from "noise" correlation measurements. 

 

 In any event, reactivity is not measured directly but only 

as the ratio of  /  , i.e., in $.  This is not at all surprising 

since each of the parameters in the point kinetics equations is a 

defined quantity.  It does imply, however, that there is a 

certain ambiguity in all measurements of reactor kinetics 

parameters and that certain quantities must be calculated in 

order to obtain reactivity worth. 

 

 Additional Comments.  All of the above equations and 

solutions have been predicated on the assumption that the reactor 

system has a sufficient neutron population so that it is 

deterministic in nature.  However, a treatment also exists for 

the situation where this condition is not true.  The reactor must 

then be described by stochastic kinetics.  Examples of the latter 

case are the initial startup of a new reactor in the absence of a 

neutron source.  The Godiva experiments are a case in point. 

 The mathematics of stochastic kinetics will not be treated 

here.  Suffice it to say that the ordinary kinetics equations 

describe the mean behavior of the stochastic model, but that the 

stochastic equations also predict the statistical chance that the 
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mean behavior will be obtained. 

 

 

 8.6*  "Point" Kinetics Equations Derivation 

 

 The multi-group formulation given previously can be used to 

solve the non-separable space-time kinetics problem.  When the 

reactor is sufficiently small so that it is spatially well-

coupled and the space and time variables are essentially 

separable, we can consider that the spatial flux shape changes 

negligibly during a transient.  In this case, we can treat the 

entire reactor dynamically as a "point" having certain weighted 

average properties.  Here we derive the point reactor kinetics 

equations in a proper fashion. 

 Starting with the multi-group reactor kinetics equations, we 

obtain the point kinetics equations by performing the following 

operations: 

 

1. Multiply the vector flux equation by the spatial 

fundamental mode adjoint vector taken at the initial 

time,  *
( r


), and integrate over the volume of the 

reactor; 

2. Multiply each precursor equation by  *  di and integrate 

over the volume of the reactor; 

3. Simplify the resulting equations by defining various 

global terms such as reactivity, lifetime, generation 

time, effective delayed neutron fractions, etc. 

 

The adjoint is used as a weighting function to ensure that all 

neutrons are given the proper importance in the integral neutron 

balance.  The weighting factor  di is included in the precursor 

equations to produce integral terms that are similar to those 

found in the neutron balance equation. 
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 The flux equations give, after weighting and integration, an 

equation of the form: 

The precursor equations give, after weighting and integration, an 

equation of the form: 

 Obviously, we would like to simply these equations by 

defining an "effective neutron density" and also an "effective 

precursor concentration."  Define the effective neutron density 

as 
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Furthermore, factorize the time-dependent flux into an amplitude 

factor that has a strong dependence on time and a shape factor 

that has a weak dependence on time.  We can compute the shape 

function using static codes such as EXTERMINATOR.  Specifically, 

let 

Conceptually, this substitution allows us to work with the known 

shape function  ( r

) rather than with the unknown flux function 

 ( r

,t).  Point kinetics is really valid only when the shape 

function is in fact a constant proportional to the initial 

fundamental mode flux, i.e., 

When this condition is not valid, it is still possible to use a 

form of point kinetics by periodically updating all of the 

definitions.  One such method is called the quasi-static method. 

Note that, with the above factorization, the shape function is 

normalized to unity, as can be shown by substitution, i.e., 

 

 The weighted and integrated balance equations are, in fact, 

the point kinetics equations when certain definitions are made.  

Let the total weighted production rate be defined as the integral 

containing both the prompt and delayed neutron production, i.e., 

Then we can obtain an expression for the generation time,  , of 

the entire reactor as 
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 In the same manner, the effective delayed neutron fraction, 

 i is defined as 

Obviously 

 

For a thermal reactor,  i >  i because delayed neutrons are more 

important than fast neutrons since they have a smaller leakage 

probability. 

 We insert the shape function in Eq. (8.6), add and then 

subtract a term containing  i, and divide by (
*

0
, T ).  The 

result can be written as the following equation: 

The precursor equations can be treated similarly to obtain the 
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expression 

We make the following additional definitions:  The dynamic 

reactivity is defined as 

The weighted precursor concentrations are 

 

 

The weighted source is 

The quantities  ,  , and   have at best a weak dependence on 

time while the major dependence is contained in the factors n(t) 

and ci(t). 

 Using the above definitions the point kinetics equations are 
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obtained in the familiar form given by Eqs. (8.8) and (8.9). 

 

 

 8.7  Method of Obtaining  ,  ,  , and    

 

 The EXTERMINATOR code numerically solves the static 

eigenvalue problem to give the flux vector  0 and the 

fundamental mode eigenvalue  0 = keff.  By repeating the problem 

using L T
 and M T

, the code also produces the adjoint flux  0*.  

These are used to make static estimates of the dynamic values of 

 ,  ,  , and  .   

 The primary difference between the static and dynamic 

calculations is the form of the production operator.  In 

addition, the static problem contains  0 while the dynamic 

problem does not.  For all of the static definitions, the 

approximation used is the following, 

 

 

This is to say that the slightly different importance of the 

delayed neutrons due to their lower energy spectrum is ignored, 

and a correction is made for keff  1.0.  We shall use this 

approximation to redefine our quantities of interest. 

 

 Lifetime.  The lifetime,  , is the weighted integral time 

that the average neutron lives before being captured or being 

leaked from the core.   
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In words, it is 

or in the one-speed, bare core approximation, 

The perturbation theory equivalent is to weight the 1/v factors 

in the numerator and the losses L in the denominator to obtain 

One must input the inverse velocities for T  to the EXTERMINATOR 

code. 

 

 Generation Time.  The generation time,  , is the weighted 

integral time until a neutron is produced.  In words, it is 

or in the one-speed bare core approximation, 

The perturbation theory equivalent is
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 By comparing the equations for   and  , we find a simple 

relationship between them, namely, 

 Effective Delayed Neutron Fraction.  Delayed neutrons are 

born as a physical fraction   of the total fission neutron 

production, but they are more important than fission neutrons 

because they are born at a lower energy.  One might ask the 

question:  If the delayed neutrons were all born with a fission 

spectrum, what effective fraction would be needed to give them 

the same importance as they have in the actual situation?  In 

words, this equation is 

The expression evaluated by EXTERMINATOR is 

One must input the values of  i and the  di vectors that 

describe the delayed neutron spectra. 

 

 Reactivity.  There is a conceptual difference between the 

static and dynamic definitions of the reactivity,  .  In the 

dynamic case, we take the weighted integral difference between 

total production and loss to determine the Δk difference from a 

critical state of keff = 1.0.  In the static case we assume that 

the reactor is effectively critical at keff =  0 and hence we 

compute the Δ   for a change in the production and loss terms of 

an amount  M  and  L.  Also, in the static case we ignore the 

slight difference in importance between the prompt and delayed 

neutrons in the M  and  M  terms. 

 .k  =    =  eff0   (8.52) 
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 The reactivity expressed in static terms is 

 

or 

 

One sees that the fission terms are divided by  0 to correct to 

keff = 1. 

 

 

 Problems 

 

8.1* Few-group computer codes such as RAUMZEIT or WIGLE can be 

used to compute a one-dimensional spatial transient.  The 

geometry is shown below. 

 

 

 The transient is caused by changes in thermal absorption, 

 a2 in region 2 or 4.  Material 1 is a reflector material, and 

the others are fuels.  The material properties of the four 

different region types are the following: 
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 Use two neutron groups, six precursor groups, and a total of 

121 mesh points.  Use slab geometry with a zero flux 

boundary condition on each outer surface.  The transverse 

buckling can be taken to be B
2
 = 0.001 cm

-2
.  The mesh 

spacings are uniform and will be one of the four values:  

2.0 cm; 2.25 cm; 2.5 cm; 2.75 cm. 

 

  a)   Long-time-scale Down-transients (four problems) 

 

   Double the thermal group  a in region 4 and hold 

it fixed at that value.  Use the prompt jump 

option.  Take 1 s time steps for 30 s.  Also do a 

static flux calculation with the new  a value. 

   Plot:(a) Initial thermal flux shape normalized to 

unit power.     

           (b) Final thermal flux shape normalized to  

unit power, 

           (c) Flux shape at 5 seconds; 

           (d) Flux shape at 30 seconds;    

           (e) Power vs. time on semi-log paper. 

   Compare results using different sized mesh spaces. 
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  b) Short-time-scale Down-transients (four problems) 

 

   Double the thermal group  a in region 4 and hold 

it fixed at that value.  Use 1/v1 = 10
-8
 and 1/v2 = 

5 x 10
-6
 s/cm.  Take ten steps at Δt = 10

-5
 s and 

the rest of the steps at Δt = 10
-4
 s.  Also do a 

static flux calculation using the new  a value.  

Watch for numerical instability. 

   Plot: (a) Initial thermal flux shape normalized to 

unit power; 

           (b) Final thermal flux shape normalized to 

unit power; 

           (c) Flux shape at 10
-3
 seconds; 

           (d) Power vs. time on semi-log paper. 

   Compare your results to those for another mesh 

spacing. 

 

  c)   Short-time-scale Up-transients (four problems) 

 

   Decrease the thermal group  a in region 2 by 20% 

of its original value and hold it fixed.  Use 1/v1 

= 10
-8
 and 1/v2 = 5 x 10

-6
 s/cm.  Take ten steps at 

Δt = 10
-5
 s, and the rest of the steps at Δt = 10

-4
 

s.  Also do a static flux calculation using the 

new  a value.  Watch for numerical instability. 

   Plot:(a) Initial thermal flux shape normalized to 

unit power; 

    (b) Final thermal flux shape normalized to 

unit power; 

    (c) Flux shape at 10
-3
 s; 

    (d) Power vs. time on semi-log paper.  Note 

that the transient is not initially 

exponential although the change in 
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material properties is constant with 

time.  Explain. 

   Compare your results to those for another mesh 

spacing. 

 

8.2* You are given the time-dependent few-group neutron balance 

equation (ignoring delayed neutrons) 

 where T  is a matrix of inverse group velocities and M  and 

L are the production and loss operators, respectively.  

Assume that the time behavior is asymptotic and of the form 

 Obtain the  -mode eigenvalue problem by substituting the 

asymptotic form into the balance equation.  Derive the 

corresponding ω-mode adjoint problem and demonstrate the 

biorthogonality property of the  -modes. 

 

8.3 Consider the point reactor kinetics equations with two 

delayed precursor groups.  Derive the inhour equation for a 

step change in   by finding the characteristic equation for 

the vector-matrix formulation of this problem. 

 

8.4 A reactor has been operating at a steady state neutron 

density of n0.  At time t = 0, a neutron vacuum cleaner 

instantaneously removes all of the neutrons in the system, 

leaving only the precursors.  If the vacuum cleaner is 

turned off immediately, write expressions for the resulting 

neutron density and precursor concentration as a function of 

time after this action.  Assume that the system is 

adequately described by one effective group of delayed 

 t),(r,)L - M(=t)(r,T
 




 

 

 .e(r)  =  t)(r, t   
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neutron precursors. 

 

8.5 You are given a reactor that is initially critical with a 

neutron density of n0 neutrons/cm
3
.  Assume point kinetics 

is valid with one group of precursors.  At time t = 0, an 

additional c0 precursors/cm
3
 are instantaneously injected 

into the system.  Calculate n(t) and c(t) after the 

injection in terms of n0, c0, and  .  Does   enter into 

your equations? 

 

8.6 Assume that the reactivity insertion upon control rod 

withdrawal is given by  (t) = at where a = 10-5 and t is in 

seconds.  Assume that throughout the time that  (t) is 

changing, dci(t)/dt = 0 in the point reactor kinetic 

equations, i.e., there is an exact balance between 

production and loss by radioactive decay of the precursor 

concentrations. 

  a) Determine the response of the reactor to this 

change in reactivity. 

  b) Compute the time needed to double the neutron 

density if   = 5 x 10-4 s. 

  c) How many cents worth of reactivity will be 

introduced in  80 s assuming  = .008 (UVAR core)? 

 

8.7 A point reactor with one group of delayed neutron precursors 

operates at equilibrium in the sub-critical state (   is 

negative) when a source of strength Q is present. 

  a) If the source is extracted suddenly at time t = 0, 

find the time-dependent neutron density.  List any 

assumptions you make. 

  b) If   = -10¢, find the value of the neutron 

density at t = 0+ after the source is removed. 
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    CHAPTER 9 
 

POISONING, TEMPERATURE EFFECTS  

AND DEPLETION IN REACTORS 
 
 

 

 

 When any nuclear reactor operates at an appreciable power 

level for a period of time ranging from hours to months, a 

significant number of atoms in the reactor undergo nuclear 

transmutation.  Most of the atomic species in the reactor absorb 

neutrons to some extent, usually becoming radioactive isotopes 

that then decay to other isotopes or capture neutrons and 

transmute again.  Fertile isotopes, such as 
238
U, cannot only 

capture neutrons, transmute and then decay to higher Z materials 

such as 
239
Pu, but they can also split into pairs of light 

isotopes in a myriad of ways leading to a variety of fission 

products. 

 The equations governing the total number of atoms of a given 

type at any physical location in the reactor are generally first-

order, coupled, ordinary differential equations.  Unfortunately, 

in all too many cases, the equations do not have constant 

coefficients.  Quite often, some of the equations are nonlinear. 

Hence, while the formulation of the problem is relatively easy, 

analytic solutions are often hard to obtain.  One is usually 

forced to solve poisoning and depletion problems numerically, in 

conjunction with the solution of the space-dependent reactor 

problem, often with temperature effects included insofar as the 

temperature modifies the atom densities through expansion and 

affects local neutron spectra. 

 The reasons for the above situation are not difficult to 

understand.  Whenever the atom density or cross section of a 

nuclide changes, or other atom species appear, one obtains a 
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reactivity effect.  Nuclear reactors must be kept in a critical 

state during normal operation, and therefore some type of control 

action must be taken to compensate for these reactivity 

variations.  The two effects combine to shift the spatial flux 

distribution as a function of time.  Furthermore, reactors are 

usually operated at constant power, so that when the fuel begins 

to deplete, the average flux level must rise to compensate. 

 Fortunately, the various possible dynamic effects have 

significantly different time constants so that we can usually 

isolate the treatment into essentially non-over-lapping 

categories.  The usual categories are: 

 

 1. Seconds to minutes - reactor kinetics and dynamics 

including prompt thermal feedback effects; 

 2. Hours to days - fission product poisons such as xenon 

and samarium, including power feedback effects; 

 3. Weeks to years - fuel depletion, breeding, and burnable 

poisons. 

 

 

 9.1  The Fission Product Xenon-135 

 

 Xenon-135 is a very important fission product for three 

different reasons.  First, because the mass number 135 lies near 

the peak of the "double hump" fission product yield curve, it has 

a very high chain yield, over 6% for 
235
U fission.  Second, xenon 

has a very high cross section,  a  =  ~3 x 10
6
 barns, because it 

has a giant resonance at thermal neutron energies that fosters 

the maximum cross section predicted theoretically using the 

optical model of the nucleus.  Third, the associated half-lives 

of the important members in the 135 chain are of the order of 

several hours, causing the effects to appear rapidly during 

normal reactor operation. 
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 The above factors lead to two separate problems involving 

xenon:  (1) the poisoning problem, which occurs during startup, 

load changes, and shutdown of the reactor; and (2) the xenon 

oscillation problem, which involves damped or growing spatial 

power shifts that can occur during normal operation of the 

reactor at a constant total power level.  We shall examine both 

problems in some detail. 

 The 135 chain for 
235
U fission is  

The tellurium decays so rapidly that the iodine is produced 

almost immediately; the iodine can therefore be considered to be 

the direct product of fission.  We must write a balance equation 

for both the iodine and the xenon at each spatial position in the 

reactor.  The iodine equation is 

 

For simplicity, we use one-group theory, but the fission cross 

section and the flux could be written as multi-group vectors if 

desired.  The corresponding xenon equation is 
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We ignore burnup of the iodine because the absorption cross 

section is small and  aI  <<  I.  In addition, we have the 

spatial flux equation 

 The reactor balance equation has purposely been written as a 

static balance equation instead of a time-dependent equation.  On 

the time scale involved in xenon poisoning effects, one can 

ignore the delayed neutrons and the time rate of change of the 

flux.  However, to the extent that the xenon exerts a reactivity 

effect, some external control action must be taken to maintain 

the criticality at the value of keff =  0 = 1.  The control 

action for a commercial reactor is invariably a symmetric 

movement of a bank of control rods, designed to produce a minimum 

local perturbation and avoid excitation of harmonic flux modes. 

 

 

 9.2  Xenon Poisoning 

 

 Xenon poisoning is significant only in a thermal reactor 

because only the thermal cross section of xenon is large.  If one 

makes the approximation that the flux is constant and does not 

vary during the transient xenon behavior, then the xenon and 

iodine equations are linear with constant coefficients and can be 

solved analytically.  To be rigorous, one should use the multi-

group formulation, but it is a reasonably good approximation to 
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treat the equations as a one-group problem if one remembers that 

almost all fission occurs in the thermal group and the xenon 

absorption occurs there too. 

 Reactor design calculations are usually done to check three 

separate xenon conditions:  (1)  no xenon; (2)  equilibrium 

xenon; and (3) peak xenon.  We have already discussed how to 

calculate the "no xenon" case numerically in Chapter 6.  This 

gives a flux shape  ( r

) that can be used to calculate the 

equilibrium xenon.  Equilibrium means no change with time; this 

condition may be obtained by setting dI/dt and dX/dt equal to 

zero.  The result at any spatial position is 

and 

We keep  ax as a function of position because the local neutron 

spectrum determines the average microscopic cross section used in 

the equation. 

 We recall that the neutron flux varies over at least an 

order of magnitude from the center to the outside of a reactor.  

In the high flux limit where burnup of xenon is much more 

important than decay, i.e., when  axφ >>  x, we can ignore  x in 

the denominator of Eq. (9.5) to obtain the effective equilibrium 

xenon macroscopic cross section, 
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The resultant reactivity worth is approximately 

Hence, the keff of the core with all control rods out must be at 

least 1.0262 in order to allow the reactor to operate with xenon 

present, and the control rods must be able to compensate for this 

reactivity, which is greater than 4$, when there is no xenon.  In 

the general case, when  ax  is not much greater than  x, the 

reactivity effect is less than that given above because of the 

extra term in the denominator.  It is 

We note the rather curious appearance of  2
( r


) terms in the 

numerator of the above expression.  When combined with the 

adjoint flux shape, which tends to peak in the same spatial 

position in the reactor, the xenon in the highest flux position 

in the reactor is very strongly weighted in computing the 

reactivity effect in the core.  Hence, three-dimensional 

solutions are usually required if an accurate representation of 

the effect of xenon is to be obtained. 

 

 

 9.3  General Transient Solution for Buildup of Xenon and 

Iodine 

 

 The general solution to the xenon poisoning problem, when 

the flux is constant during the transient, is easily obtained 

using Laplace transforms.  The iodine equation becomes 
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or 

The solution is obtained by taking the inverse transform of each 

term, yielding 

This is the sum of a term representing decay of any iodine 

initially present plus buildup of iodine due to operation at the 

flux  . 

 

 The xenon equation is transformed similarly and becomes 

or 

 

The solution is obtained by inverting each term, giving 
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To check the generality of the equations, try the following 

cases: 

 

 (a) Initial value.  Let t = 0 so that e
-at
 = 1.  Then I(0) = 

Io and X(0) = Xo as expected. 

  (b) Equilibrium value.  Let t =  so that e-at = 0.  Then 

 and 

 as obtained previously 

 (c) Peak xenon at shutdown.  Let   = 0.  Then the 

equations reduce to 

 

  and 

 We find the time tmax at which the peak xenon occurs by 
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setting dX/dt = 0.  If shutdown begins from equilibrium, we use 

I   and X   for the initial values in Eqs. (9.13) and (9.14).  The 

amount of xenon present at time tmax is called "peak xenon," which 

can be many times greater than the equilibrium value depending 

upon the magnitude of the equilibrium flux before shutdown. 

 The solution to the xenon buildup problem is a curve that 

peaks at approximately eleven hours after shutdown and then decays 

with the half-life of xenon.  If the flux is less than about  

4.0 x 10
11
 n/cm

2
-s, no peak is observed at all.  As the flux is 

increased above 10
13
 n/cm

2
-s, a considerable amount of xenon may be 

present, possibly exceeding the reserve reactivity of the control 

rods.  In such a case, there is nothing to do but wait until the 

xenon decays so that the reactor can be restarted.  This waiting 

period is called the "deadtime."  The curves for shutdown from 

several different flux levels are shown in Figure 9.1. 

 

 Fig. 9.1  Xenon Worth vs. Time After Shutdown 

     (From Introduction to Nuclear Reactor Theory by J.R. Lamarsh, 1966, Addison Wesley) 

 

 Vector-Matrix Formulation.*  The iodine and xenon 

differential equations can be put into the form of a first-order 

matrix differential equation.  We define the following 
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quantities: 

and 

With these definitions, the problem reduces to the form 

 

 

If the flux is constant, then the matrix B  is constant and the 

general solution can be written immediately as the equation 

 

The matrix [exp B t] can be expressed in terms of the 

characteristic values or eigenvalues of the B  matrix using 

Sylvester's theorem.  These eigenvalues are obtained from the 

expression 

or, written out, 

 

The solutions are obviously  0 = - I and  1 = -( x +  ax ), 

which lead to solutions for the xenon and iodine equations 

containing linear combinations of the exponentials, 
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But these are precisely the factors appearing in the solutions 

obtained using Laplace transforms. 

 

 

 9.4  Spatial Xenon Transients 

 

 The analytic solution to the xenon poisoning problem for a 

constant flux level, obtained in the previous section, is valid 

at any local point in the reactor.  In actual practice the flux 

does indeed vary with time, but if the time interval is taken to 

be short with respect to the half-lives of the xenon and iodine, 

then the flux does not vary greatly.  This suggests a quasi-

static method of calculating the transient effects of xenon in 

the system. 

 We start at t = 0 with a static calculation of the spatial 

flux distribution in a reactor system plus initial conditions on 

xenon and iodine.  Assuming that the flux at each spatial 

location is constant over a time step Δt1, we then compute the 

xenon and iodine at time t' = Δt1 using Eqs. (9.10) and (9.12).  

The xenon distribution, thus obtained, is used in a new static 

flux calculation to obtain the corresponding flux distribution at 

time t .  Since xenon primarily affects the destruction operator, 

the equation to be solved is 

We can now do a control rod search to maintain criticality at the 

original value of keff =  0, if desired.  Temperature feedback 

can also be included by simultaneously doing a heat balance and 

computing the corresponding reactivity effects. 

 Using the new flux at time t , plus the new xenon and iodine 
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as initial conditions, another time step Δt2 can be taken to find 

the xenon and iodine at t" = t' + Δt2.  Another static flux 

calculation gives the corresponding spatial flux distribution.  

The procedure can be repeated for as many time steps as desired, 

thus tracing out the complete spatial xenon transient.  Under 

certain conditions, the spatial solution is found to oscillate 

with time, and this is known as a xenon-induced spatial power 

oscillation. 

 A block diagram of the quasi-static process of solution is 

given in Figure 9.2.  Naturally, the accuracy attained depends 

upon the size of the time steps used because the spatial flux is 

not really constant with time.  The numerical solutions tend to 

predict longer oscillation periods and smaller growth rates than 

are actually present, if large time steps are taken.  However, 

means exist for estimating the correct values from the data 

obtained, so this is not a major limitation of the method. 

 

 

 Fig. 9.2 Block Diagram of Practical Solution Procedure for 

Spatial Xenon Transients 
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9.5  Xenon-Induced Spatial Power Oscillations 

 

 Xenon oscillations have indeed been observed in large, high 

power, thermal reactors.  A spatial xenon oscillation starts as 

follows:  Suppose that for some reason the flux increases 

slightly on one side of the reactor and decreases slightly on the 

other.  Where the flux increases, more xenon will burn out, and 

where it decreases less xenon will burn out than in the initial 

state.  The immediate effect is positive reactivity on the side 

where the flux increased, and vice-versa, tending to reinforce 

the original unbalance.  This trend continues until such a time 

that the increased iodine production on the high-flux side begins 

to result in increasing xenon, and the contrary.  Then the flux 

on the high-flux side begins to decrease and vice-versa.  

Eventually the flux will be peaked on the opposite side of the 

core as shown in Figure 9.3.  Continuation of the process is, in 

fact, a side-to-side oscillation.  The spatial distribution of 

power shifts from side to side even though the total power 

remains constant. 

 

 Fig. 9.3  Schematic of a Spatial Xenon Oscillation 
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 We can postulate theoretically that the oscillation is 

composed of an interaction between the fundamental mode and the 

first-harmonic mode solutions to the neutron balance equations, 

as shown in Figure 9.4, and is of the form 

where a(t) is a time-dependent modal combining coefficient.  We 

find that the solution contains three important factors:  (1) the 

difference in criticality between the fundamental and first 

harmonic modes,  0 -  1; (2) the "effective" flux level or 

operating power of the reactor; and (3) the effective thermal 

feedback and void feedback contributions. 

 

 Fig. 9.4  Harmonic Flux Modes 

 

 An important point to realize is the fact that large 

commercial thermal power reactors of the pressurized water or 

gas-cooled types can be expected to exhibit xenon spatial 

oscillations.  The eigenvalue difference for these reactors, 

namely,  0 -  1, may be less than 0.01, while the average 

 ),r(a(t)  +  )r(  =  t),r
10


(  (9.18) 
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thermal neutron flux level may exceed 10
13
 n/cm

2
-s.  Both factors 

tend to promote the possibility of oscillations.  Negative 

feedback, on the other hand, tends to act as a stabilizing 

influence to balance against the tendency to oscillate.  In fact, 

it is the large amount of negative feedback from void formation 

that makes boiling water reactors stable to xenon oscillations. 

 When oscillations are observed, then to first order at any 

spatial point, the time behavior is a damped or growing sinusoid 

about the average flux value, of the form 

A( r

) is an initial value, e.g., induced by control action.  The 

exponent b is called the damping factor; it can be either 

positive or negative.  The oscillation period is given by T = 

2 / ; it is typically 15 hours or greater.  This means that the 

period of an oscillation is longer than the work-shift time of a 

reactor operator!  The quantity   is simply a phase angle.  

Examples of both damped and growing xenon oscillations are shown 

in Figure 9.5. 

 

 Fig. 9.5  Schematic of Damped and Growing Xenon Oscillations 

 ).  +t  (sine)rA(  +  )r(  =  t),r bt 


(  (9.19) 
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 There exist analytically derived correlations that can 

fairly successfully predict the growth factor b and period T of a 

xenon oscillation.  One of these correlations is illustrated in 

Figures 9.6 and 9.7 for a 
235
U fueled reactor.  The dimensionless 

parameters that appear here can be defined approximately as the 

susceptibility factor, 

and the dimensionless effective flux level, 

The first-harmonic flux  1, used in the calculation of  , is 

that flux shape corresponding to the smallest value of  

 0 -  1, which happens to be the first axial harmonic for a PWR 

and the first azimuthal harmonic for an HTR. 

 One sees that oscillations are initiated by increasing the 

effective power level ( ) for a given reactor, or by changing 

the susceptibility ( ) by increasing the reactor dimensions 

and/or flattening the flux.  The more peaked the flux 

distribution happens to be in the direction perpendicular to the 

direction of oscillation, the higher the value of   becomes for 

a given average power level, thus reducing the stability of the 

core against oscillations. 

 For a growing oscillation, the reactor operator must take 

control action at some point to safely stop the transient.  From 

an optimal standpoint, the most effective action is not 

intuitively obvious because of the time lag built into the xenon 

and iodine equations.  Qualitatively, control action should be 

taken just before the flux oscillation maximum is reached, and 

then in the direction of reducing the flux.  The action should 

then be released as the oscillation crosses the null point.   

 , + ) - (  feedback10          (9.20) 
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 Fig. 9.6 True Growth Factor vs.  ,  for a Reactor Loaded 

with Pure 
235
U,  i = 0.0617,  x = 0.0024 

 

 

 Fig. 9.7 True Period vs.  ,  for a Reactor Loaded with 

Pure 
235
U   
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 9.6  Samarium Poisoning 

 

 The fission product 
149
Sm is stable and has an average 

thermal neutron absorption cross section at 20C of 58,500 barns. 

 The chain yield is only 1.13%, so that samarium is not as much a 

problem as xenon, but it is sufficiently important that its 

behavior must be considered.  The Mass 149 chain is 

 Usually the neodymium is ignored, and promethium is assumed 

to be the direct product of fission.  Using this assumption, the 

balance equations are 

and 

These equations are considerably simpler than the xenon 

equations.  The equilibrium values are obtained by setting the 

derivatives to zero, so that production equals loss.  The 

equilibrium values are 

and 

 (stable)  Sm 

hr 54

Pm 

hr 2.0

  

 

Nd 

   

1.13%   

149

-

149

-

149





  

 P, -  = 
dt

dP
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 We immediately see that the maximum reactivity effect for a 

bare core is 

 

 General Solution for Constant Flux.  Taking Laplace 

transforms, the promethium equation becomes the following, using 

the initial condition P(0) = P0: 

or 

 

Hence, the time-dependent solution is 

 The samarium equation becomes, using the initial condition 

S(0) = S0, 

or 

 

 

The time-dependent solution to this equation is 

 0.00463,- = 
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As a check:  at t = 0, 

and at t = , 

 For the samarium buildup problem after shutdown, let the 

flux go to zero to obtain the following equations: 

and 

S0 and P0 are obtained from the general solution just prior to 

shutdown. 

 After shutdown, all burnup of samarium ceases so that 

samarium simply builds up as the existing promethium decays.  

This means that there must always be sufficient reserve 

reactivity tied up in the control rods to override the samarium, 

so that one can restart the reactor and burn the samarium back to 

equilibrium levels.  Fortunately, the reactivity tied up by 

samarium is not excessive.  The approximate shutdown curve is 

shown in Figure 9.8.  Note that the time scale is considerably 

longer than for xenon. 

 

.e
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As seen in the xenon discussion, the general solution to the 

samarium equations can also be used over discrete time steps, 

where the flux remains constant, to compute the samarium at any 

space point in the reactor.  Thus, a spatial samarium transient 

can also be calculated numerically.  Fortunately, the samarium 

equations do not lead to potential spatial power oscillations. 

  

  Fig. 9.8  Samarium Buildup After Reactor Shutdown 

 

 

 9.7  Temperature Effects on Reactivity 

 

 Because of a desire to obtain a relatively high uniform 

burnup of the fuel in a nuclear reactor for economic reasons, and 

at the same time to avoid having "hot spots" where the local 

power production significantly exceeds the average power 

production, the fuel loading in power reactors is generally 

designed to be spatially non-uniform.  The core is loaded in 
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zones of varying enrichments of 
235
U, with the lowest enrichment 

usually being set in the center of the core where the thermal 

flux tends to be the highest.   Modern fuel management schemes 

add new fuel on the periphery and scatter-load once- and twice-

burned fuel in the center region.  In any event, the power 

distribution is spatially non-uniform at the beginning-of-life of 

the core (BOL) and varies in a spatially non-uniform manner as 

the fuel depletes to end-of-life (EOL).  A typical fuel-loading 

pattern is shown in Figure 9.9. 

 

 Fig. 9.9 Scattered Fuel Loading Arrangement for a Three-

Cycle Reactor. 

 

 The coolant usually enters at the bottom of the core at a 

temperature dependent upon external power demand, and flows 
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upward through the fuel assemblies in separate flow channels, 

mixing in an upper plenum at the top of the core.  There are 

sometimes even two separate passes through different parts of the 

core, with mixing in between passes.  This implies that the 

temperature distribution of the coolant is also spatially non-

uniform, and furthermore implies that the power distribution and 

the temperature distribution do not coincide. 

 If the fuel elements are composed of uranium dioxide rods, 

the temperature of the fuel rods will significantly exceed the 

temperature of the coolant because of the low thermal 

conductivity of the UO2.  For a given change in reactor power, 

the average temperature of the fuel rods could vary by a 

significantly greater degree than the coolant temperature and 

also vary much more rapidly because of the difference in specific 

heats. 

 We would like to be able to represent the reactivity effects 

of temperature or power changes in terms of coefficients of 

reactivity, since these effects are important feedback mechanisms 

that help determine the stability and dynamic behavior of the 

operating reactor to variations in power production.  We usually 

speak of the moderator coefficient,  m( k/k/Fm), the fuel or 

Doppler coefficient,  f( k/k/Ff), and the power coefficient, 

Although there has been a shift to SI units in some areas, 

English units are still commonly used in thermal reactor design 

and will be retained here. 

 The three most important mechanisms for instituting a 

reactivity change as a result of a temperature or power change 

are the following: 

 

 1. Thermal expansion.  This effect is most prominent for 

the coolant, but also affects other materials to a 

 k/k/MWT).(   P/T + P/T    ffmmp         (9.33) 
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lesser extent.  A change in volume density modifies the 

atom densities of all constituents and hence affects 

the macroscopic cross sections, i.e.,  N(Tm)  

 (Tm). 

 2. Spectrum shift.  An increase of temperature increases 

the energy distribution of the vibrating atoms 

comprising the material.  Since the cross sections at 

thermal energy are generally of the form  a(E) = 

 0v0/v, an upward shift in spectrum leads to a lower 

average cross section for the thermal group, i.e., 

  This can be understood by examining Figure 9.10.  

Hence, we have a macroscopic cross-section variation 

due to temperature changes, namely, 

 

  Fig. 9.10  Thermal Spectra and Thermal Cross Sections 
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 3. Doppler broadening of resonances, with effects due to 

fuel lumping.  Reaction rates are a function of the 

atom density, neutron density, cross section, and the 

relative velocity between the atom and the neutron, 

i.e., vr = |V  - v |.  When the reaction rate is 

averaged over the distribution function of atom 

velocities, in order to find the effective cross 

section that corresponds to the actual neutron flux, 

one finds that the effective cross section curve is 

broadened as temperature increases.  This is shown in 

Figure 9.11. 

  In certain situations where the fuel is lumped, the net 

absorption rate can increase significantly with 

temperature.  Note that this refers to the fuel 

temperature, which may be significantly different from 

the moderator temperature; even the rate of change of 

fuel temperature with time after a power change may be 

greater than that for the moderator.  Hence, 

temperature coefficients have associated time 

constants, and may have to be treated as separate 

entities in reactor dynamics situations. 

 

 Fig. 9.11  Illustration of Doppler Broadening with 

Temperature 
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 Since each of the three mechanisms leads to spatial changes 

in macroscopic cross sections in each energy group, we can in 

fact use our perturbation theory approach to properly average the 

spatial changes over the core to obtain a reactivity effect.  

This is one valid way to evaluate temperature coefficients, given 

the known temperature change in each part of the core and the 

corresponding cross section change.  Another possible approach is 

to simply calculate the value of keff numerically for two separate 

reactors whose cross sections correspond to operation at two 

different temperatures (averaged over the core) or two different 

power levels.  The appropriate temperature or power coefficient 

is then equal to the difference in keff values divided by the 

difference in average temperature or power values.  The 

perturbation theory approach, when it can be implemented with 

existing computer codes, is the more accurate approach to use 

because the reactivity changes are generally small. 

 For a large commercial pressurized water reactor (PWR), 

typical values of the moderator coefficient,  m, are in the 

range of  m = ± 3 x 10
-5
  k/k/Fm.  This is primarily a coolant 

density effect.  The coefficient is usually positive at BOL 

because the water contains soluble poison such as boric acid, and 

thermal expansion leads to less absorber being present in the 

core.  At EOL, when the poison concentration is low, the 

coefficient is negative because the primary effect is a variation 

in neutron moderation properties.  The average temperature of the 

coolant is approximately 580F, and the temperature rise across 

the core is typically 50F.  Therefore, a 10% change in reactor 

power corresponds to a reactivity insertion of about 2¢. 

 The fuel coefficient,  f, is typically in the range of  

 f = -1 x 10
-5
  k/k/Ff.  The actual amount of reactivity 

feedback depends upon how much the average fuel temperature 

changes, since this effect is related to Doppler broadening of 

resonances.  The fuel temperature rise, in turn, depends upon the 
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diameter of the UO2 pellets, so this is a design consideration.  

Needless to say, the power coefficient,  p, must always be 

negative in order to have a stable reactor system.  Hence, the 

magnitude of the negative fuel feedback effect must be large 

enough to be able to overcome the possible positive moderator 

coefficient at BOL.  It should also be noted that Doppler 

broadening of fission resonances will occur.  In a reactor that 

contains highly-enriched uranium, this can potentially lead to a 

very small Doppler coefficient.  This is an important design 

consideration. 

 

 

 9.8  Effect of Thermal Feedback on Reactor Kinetics 

 

 When a reactor operates at a high power level, both Doppler 

and moderator temperature feedback come into play.  The total 

reactivity driving the combined system becomes the sum of the 

externally applied control such as control rod motion and boron 

"shim" plus the thermal feedback.  The important thing to notice 

is that the reactor kinetics equations become augmented by the 

heat balance equations.  Furthermore, the external heat transfer 

in the steam generator must also be included, and possibly even 

the turbine equations.  Hence, the order of the system of 

differential equations can become fairly large, especially if the 

reactor flux distribution is calculated using a spatially-

dependent or nodal model. 

 A single loop of a typical PWR reactor system is shown in 

Figure 9.12.  To fully model the system dynamically we need to 

write separate equations for the core, plenums, piping, 

pressurizer, steam generator tubes, etc., for each loop in the 

system, plus as much spatial detail in the core as desired.  This 

is a formidable job.  In earlier times, a very large analog 

computer would have been completely dedicated to this task for 
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periods of months to years.  Present practice involves the direct 

integration of coupled systems of perhaps hundreds of ordinary 

differential equations on a digital computer.  A typical dynamics 

code of this type is the RETRAN code, which was developed for the 

Electric Power Research Institute (EPRI).  

 

 Fig. 9.12  Pressurized water reactor coolant system 

 

 To illustrate the ideas involved, we consider a simplified 

reactor system where the reactor is described by the point 

kinetics equations with one group of delayed neutrons.  We lump 

the fuel and calculate a single average fuel temperature.  We 

lump the steam generator and let the secondary side be a simple 

power demand.  The block diagram of this system is shown in 

Figure 9.13.  The differential equations governing the system are 

the following: 

 a. Reactor Kinetics (point kinetics, one group of 

precursors).  Since the reactor power is proportional 

to the flux times the macroscopic fission cross 
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section, we can write the point kinetics equations 

using the power P in place of the neutron density n.  

Hence, we have the kinetics equations 

  and 

 

 

 Fig. 9.13 Block Diagram of a Simplified Reactor System with 

Thermal Feedback 

 

 b. Fuel Temperature, Tf.  Assume that the power is 

released only in the fuel and that we can characterize 

the fuel by an average fuel temperature.  The balance 

equation then becomes 

 c, + P
 - 

 = 
dt

dP
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  where mf is the mass of fuel (1b), cf is the specific 

heat of fuel (Btu/lb-F), and A is the heat transfer 

area (ft
2
). 

 c. Moderator Temperature, Tm.  Assume that the heat is 

transferred from the fuel to the coolant, which is then 

moved by convection out of the core.  We lump all of 

the coolant in the core and give it an average 

temperature Tm, and consider separately the inlet 

temperature, Tcold, and the outlet temperature, Thot.  

The balance equation is 

  where mm is the mass of moderator in the reactor and cm 

is the specific heat.  The quantity W is the coolant 

mass flow rate in lb/hr.  We also need the definition 

of the average temperature, which is 

 d. Steam Generator, Tg.  Assume a simplified steam 

generator, where the steam side simply acts as an 

external load demand, Pext.  In this case the balance 

equation is 

 

),T - hA(T    -       P   = 
dt

dT
cm
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  where mg is the mass of coolant in the steam generator 

and cg is its specific heat.  We again need an average 

temperature definition, which is 

 

                          .
2

T + T
 = T

coldhot
g

  
                 (9.40) 

  

 e. Piping.  Due the finite transit time of coolant flowing 

through the pipes, it may take from 2 to 15 seconds for 

a temperature change in the reactor or steam generator 

to be felt by the other.  If we ignore this factor, we 

see that the average reactor and steam generator 

temperatures must be identical, so that we can 

effectively lump the mass of coolant in the reactor and 

steam generator together and treat them as one.  If 

this approximation is not valid, then the actual time 

delay must be used or it must be approximated by 

another differential equation. 

 f. Reactivity Feedback from reference temperatures Tfo and 

Tmo.  The temperature coefficient is defined as the 

change in reactivity per degree change in temperature. 

Hence, we must compute the temperature change from a 

reference point.  We take this point to be the steady 

state, hot, critical, at-power situation.  Hence, the 

reactivity expression becomes 

 

,P - )T - (TcW = 
dt
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 The above simplified lumped system model contains four 

ordinary differential equations plus some algebraic equations, 

all coupled together.  In order to solve this system, we need a 

set of initial conditions, which we take to be the steady state 

operating point. 

 

 Steady State.  Steady state is the condition where all time 

derivatives are zero.  We append a subscript of zero to each 

variable to denote this state.  The reactor steady state 

equations become 

and 

The steady state condition obtained from the above equations is 

that 

i.e., there is no reactivity when the system is critical. 

 Looking at the feedback equations, we have 

 

Hence, by setting the reference for the feedback terms at the 

steady state values, we obtain the fact that  ext0 = 0.  If 

another reference point had been chosen, then the external 

reactivity term would have had to balance this feedback. 

 For the fuel temperature, moderator temperature, and steam 

generator temperature, we have the equations 

 0, = c + P
 - 

00
0     
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and 

Hence, since cm = cg, we conclude that the power produced just 

equals the power demanded, i.e., 

 Incremental System Equations.  Rather than deal with the 

actual system equations which have a set of given initial 

conditions, it is often easier to deal with equations describing 

the variations from an initial state, having zero initial 

conditions.  Furthermore, although not completely obvious, the 

system of equations as given is nonlinear.  We have the product 

 P appearing in the neutron balance, but since   is a function 

of Tf and Tm, which are functions of P in turn, we have a 

nonlinear product.  However, if the variations about the steady 

state are not large, the system is approximately linear and we 

can formally linearize it. 

 We expand all variables about their steady state values.  We 

have 

 

and 

 

0, = )T - T(Wc - )T - hA(T
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00
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Formally, we subtract the steady state balance equations from the 

differential equations to obtain a set of equations entirely in 

the incremental variables.  Since the time derivative of a steady 

state quantity is zero, we obtain the incremental reactor 

equations 

and 

The nonlinear term is treated by expanding the product ρP and 

ignoring second-order terms, i.e., by letting 

 

because  0 = 0. 

 The incremental fuel temperature equation becomes 
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Since there is no time delay in the pipes,  Tm =  Tg, which can 

be obtained from a single differential equation that lumps the 

mass of coolant in the reactor and steam generator together.  The 

resulting differential equation for the incremental water 

temperature is 

 

Finally, the incremental feedback equation becomes 

 

 

 To summarize, after linearization we have a coupled set of 

four inhomogeneous first-order ordinary differential equations 

with constant coefficients.  All of the incremental variable 

initial conditions are zero.  We know the values of P0 (the 

operating point),   ext (the inhomogeneous term representing 

operator control), and  Pext (the inhomogeneous term representing 

externally supplied load variations).  We seek values for the 

variables  P,  c,  Tf, and  Tm =  Tg, plus the auxiliary 

variables  Thot and  Tcold that are algebraically related to the 

primary variables. 

 The linear system indeed possesses a solution, and 

furthermore the solution is given as the sum of four exponential 

factors corresponding to the homogeneous solutions of the set of 

equations.  A sufficient condition for system stability is that 

the real parts of all of the exponentials must be negative so 

that the corresponding incremental solutions decay with time.  

The entire set of equations can be put into the vector-matrix 

form 
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which is recognized to be the general State Variable form for a 

controlled dynamic system.  The state vector and the control 

vector are defined as 

The system matrix is defined as the 4 x 4 square matrix 

                 ,
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and the control matrix is defined as the 4 x 2 non-square matrix  
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The entire system can be symbolically pictured using a feedback 

control diagram, as shown in Figure 9.14, where the heavy lines 

represent the fact that the interconnections are vectors. 

 The solution can be obtained by analog computer, digital 

computer, or in this case by analytic means.  When the equations 

have constant coefficients, as they do here, the solutions are 

given as a sum of exponentials.  For system stability, which is 

 ,uD  +  XB  =  X  (9.54) 
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the condition that the system returns to steady state after a 

small perturbation, it is sufficient that the exponentials all 

have negative real parts.  We can find these exponents by looking 

at the system matrix B .  Specifically, we look for the 

eigenvalues of the B  matrix by setting the determinant  

B  -  I  = 0.  If B  is an nth-order matrix, we obtain a 

polynomial of degree n in the variable  , whose solutions are 

the exponents,  i, i = 1,n.  That is, we obtain the form  

(  -  1)(   -  2)(   -  3)(   -  n) = 0.  Suffice it to say 

that in the present case, the condition for stability reduces to 

requiring that the overall power coefficient of reactivity,  p, 

be negative. 

 

 Fig. 9.14  State Variable Feedback Control System 

 

 We illustrate the response of our stable reactor system to a 

step load increase, and also to a step positive increase in 

reactivity brought about by operator control, by means of 

diagrams of the incremental system response vs. time.  For the 

step load increase we have the situation shown in Figure 9.15.  

As a result of the increased power demand, the temperatures are 

temporarily decreased causing a positive reactivity feedback and 

subsequent increased reactor power production.  There is an 

overshoot, followed by a period of settling down, until 

eventually the reactor produces 10% more power, as demanded. 
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 Fig. 9.15  Response to a 10% Step Increase in Pext 

 

 For the step increase in external reactivity, we have the 

situation shown in Figure 9.16.  As a result of the increased 

external reactivity, the reactor power increases temporarily, 

until the fuel and coolant temperatures rise sufficiently to 

produce enough temperature feedback to balance the external 

reactivity.  The system eventually settles down at the higher 

temperatures and continues to produce the original amount of 

power. 

 

 Fig. 9.16  Response to a 10% Step Increase in  ext 
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 Instead of using the vector-matrix approach, the system of 

linear equations can also be solved using the technique of 

Laplace transforms.  The algebraic ratio between an output 

variable and its corresponding input variable in the s domain is 

known as the Transfer Function.  If the Laplace variable s is 

replaced by the variable i , where i is the imaginary number and 

  is an angular frequency, then we obtain what is known as the 

"frequency domain".   Transfer functions are often measured by 

supplying sinusoidal system excitation at a range of frequencies, 

or by applying autocorrelation or cross correlation operations to 

systems that are excited by random noise.  Unfortunately, the 

resulting frequency response diagrams are often difficult to 

interpret. 

 It should be pointed out that the State Variable technique 

is the modern computational version of the analog computer 

approach.  Solutions are obtained in the "time domain", i.e., we 

see the direct response of the system to a system perturbation.  

The connection between a given output variable and its 

corresponding input variable is a type of "transfer function" 

between the two, which is actually a convolution integral.  The 

State Variable approach is also amenable to direct digital 

computer application of the ideas of optimal control.  At 

present, it is the preferred method of solution of dynamic 

systems problems. 

 

 

 9.9  Depletion 

 

 Depletion is the process whereby fuel atoms are consumed and 

other atom species are produced.  It is composed of two quite 

distinct aspects.  The first one deals with the burnup of fissile 

atoms of uranium and plutonium, plus the production of new 

fissile atoms from fertile atoms of thorium, uranium, and 
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plutonium.  The total number of such atom species to be followed 

is of the order of ten.  The second aspect is the treatment of 

the hundreds of radioactive fission products produced in fission. 

 In principle, depletion calculations are nothing more than 

repeated solutions of coupled sets of ordinary differential 

equations similar to the xenon and samarium equations.  Each 

chain may have up to six or seven members, with various cross-

links and direct fission yields.  These equations are amenable to 

vector-matrix techniques and solution by digital computer.  One 

such commonly used computer code is called ORIGEN; it is very 

useful for calculating the average amounts of different atoms for 

the purpose of evaluating the magnitude of the waste disposal 

problem for a given reactor. 

 Unfortunately, core depletion is a spatially-dependent 

problem.  Typical cores may be depleted over tens of thousands of 

individual volume regions.  Naturally, it would be very costly to 

solve hundreds of equations, thousands of times per depletion 

step.  A compromise must be made.  What is usually done is to 

solve the relevant burnup and production equations for the 

fissile and fertile species, plus a few of the important fission 

product chains such as xenon and samarium, plus equations for 

burnable poisons such as boron.  All of the other fission 

products are lumped into one or two effective "gross fission 

product" equations.  This brings the number of equations solved 

per reactor volume region down to the order of fifteen. 

 In order to fully appreciate the magnitude of the depletion 

problem, a brief description of the important factors is in 

order.  More is involved than just calculating the buildup of 

some nuclides and the burnout of others; to the extent that the 

relative distribution of absorbers varies with time, the detailed 

spectrum of neutrons varies, which affects the averaging process 

used to obtain the macroscopic cross sections.  Furthermore, we 

operate with the constraint that the reactor remains critical and 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

351 

  

produces a constant amount of power.  This implies corrective 

control rod motion as a function of time, and also implies that 

the flux level must rise as the amount of remaining fuel 

decreases.  One must also take into account the process by which 

the original fuel pin cells were homogenized to obtain the cross 

sections for the volume regions used in the diffusion 

calculation.  This means that fuel pin self-shielding as a 

function of depletion must be correctly treated. 

 The larger the core, the more sensitive it is to spatial 

flux shifts caused by control rod motion and depletion.  If the 

control rods are moved into the core center, the flux balloons to 

the outside.  If the rods are kept in the top of the core, the 

flux peaks in the bottom.  And if the control rods are moved into 

the bottom of the core, the flux moves up towards the top.  

Depending upon where the flux peaks, the burnup is a maximum, and 

so on. 

 As seen from the above considerations, the flux at any given 

point in the reactor is far from being constant with respect to 

time.  Furthermore, since depletion is an initial value problem, 

small errors made early in the calculation may compound each 

other to create large errors at the end of the calculation.  In 

the early days of commercial reactor design, the error in a 

depletion calculation at end-of-life (EOL) could have been as 

large as several hundred percent.  In fact, by making an 

appropriate three-dimensional solution (synthesis method) and 

properly simulating control rod motion, recent depletion 

calculations have been carried out that predict the operating 

history of a prototype reactor to a very high degree of accuracy. 

 One sometimes discusses the accuracy in terms of a few inches 

difference in predicted and actual control rod positions near the 

end of core life. 

 In order to mathematically state the entire depletion 

problem, we must quantify the constraints and the various 
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depletion equations that make up our problem.  The criticality 

equation is simply the static reactor balance equation, 

where  0 = 1.000 for criticality.  Embedded within the flux 

calculation is the control rod position iteration to maintain 

criticality, and the power normalization which is proportional to 

the total fission rate in the reactor from all fissile materials 

present, e.g., 

 

Here, the quantity f, which is symbolically included in the 

cross-section vector, is a self-shielding factor that indicates 

that not all of the atoms are available on an equal basis to 

cause fission.  The self-shielding factor is time-dependent to 

the extent that as the outer layers of a self-shielded poison 

deplete, the neutrons can penetrate further into the lump.  

Judicious use of lumping can in fact allow us to tailor the 

depletion history at a given location in the core within certain 

limits.  A detailed discussion of self-shielding factors and a 

practical prescription for including them in a depletion 

calculation appears in the Naval Reactors Physics Handbook. 

 Using the subscript a for absorption and the subscript c for 

radiative capture, and retaining the individual self-shielding 

factors, we can write the balance equations for the U-235 and U-

238 chains at any spatial position as: 

 U-235  Chain, 
235
U, 

 t),,r(t),rM(
1

  =  t),r(t),r
0





L(  

 

. r)}dr(f)r(N  +  )r(f)r(N  +  )r(f)r  T
f4141

T
f4949

T
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(N{  Power 25

volume
Reactor  (9.55) 
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 and 
236
U, 

 U-238  Chain, 
238
U, 

Assuming essentially direct production of 
239
Pu, by ignoring the 

short double β
-
 decay process which follows the scheme 

we obtain the additional equations: 

 239
Pu, 

 240
Pu, 

and   
241
Pu, 

We must add to the above equations the effects due to the 

insertion of lumped burnable poisons (LBP) such as 
10
B, namely, 

the poison depletion equation 

And finally, we must add equilibrium xenon and samarium as 

 .fN  +  f  T
c2525

T
a26 N - = 

dt

Nd
26

26
 (9.57) 

 .f  T
a28N - = 

dt

Nd
28

28
 (9.58) 
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 (9.59) 
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derived previously, plus some prescription to account for the 

gross buildup of a myriad of fission products which have, on the 

average, a 50 barn cross section per atom. 

 The above set of equations is not difficult to solve 

numerically over a time step of a few days to a few weeks, 

assuming that the flux is constant over the interval.  The 

primary problem is that the equations must be solved separately 

over each spatial region in the core.  Then, when the depleted 

number densities are obtained, new macroscopic cross sections 

must be computed so that the flux calculation can be repeated to 

obtain the flux and control rod positions for use in the next 

depletion step, and so on.  The process is symbolically shown in 

Figure 9.17. 

 Unfortunately it is impractical to repeat the fast and 

thermal spectrum calculations for each of the thousands of volume 

regions in the reactor.  Therefore, spectra are pre-calculated 

for typical mixtures of water, cladding, fuel enrichments, etc.   

 

 Fig. 9.17  Block Diagram of Depletion Calculations 
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These calculations are then fit by multi-parameter least squares 

techniques, such that all of the various region-wise few-group 

macroscopic cross sections can be interpolated for compositions 

in-between those calculated.  Typical fitting parameters are:  1) 

fraction of 
235
U remaining in the fuel; 2) fuel-to-water ratio; 

and rodded or unrodded condition, etc. 

 During the entire depletion history of the core, any 

operating limits that have been imposed on the design must never 

be exceeded.  Such limits are: 

 

 1. Thermal-Hydraulic.  Peak fuel or cladding temperatures, 

or local boiling percentages must not be exceeded; 

 2. Metallurgical.  Radiation damage to cladding or 

structural materials must not approach failure limits; 

 3. Ceramic.  Radiation damage, thermal cycling, and 

fission gas production must not interrupt the integrity 

of the oxide, carbide, etc., compounds used as fuels. 

 

 These considerations imply that detailed thermal-hydraulic 

calculations must be done at each depletion step to check for hot 

spots, etc.  We need detailed spatial power distributions for 

this work, and these must be culled from the flux solution 

performed at each depletion step.  If limits are exceeded, the 

fuel distribution or control rod program must be modified to 

correct the problem.  Likewise, gross accumulated irradiation 

histories must be kept and evaluated to check for potential 

materials problems.  The appearance of such problems would also 

require design modifications.  Needless to say, the design of a 

reactor with significant depletion is not a trivial problem. 

 

 Fuel Management.  Superimposed upon the depletion 

calculation is the question of how to initially pick the core 

fuel loading, and after burnup begins, how to shift fuel in such 
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a way as to obtain relatively uniform fuel burnup.  Ideally, each 

fuel element should last exactly as long as all the others, 

regardless of where in the core it is placed.  This would 

minimize the fuel costs.  In addition, we would like each fuel 

assembly to reach the end of its useful life on a convenient 

schedule such as a year, or a year-and-a-half, etc.  Table 9.1 

shows the components of the design keff at Beginning-of-life(BOL). 

 We attain our objectives by proper fuel management.  

Typically, we load the core in three separate enrichment zones, 

with the highest enrichment in the outer region and the lowest in 

the center.  A typical sequence of enrichments for a PWR would be 

3%, 2.5% and 2%.  The effect of this placement is to flatten the 

flux shape and the radial power distribution, except near the 

outer edge of the core where the boundary conditions force the 

flux to go to zero. 

Table 9.1 

PWR Design Reactivity at BOL 

___________________________________________________________ 

Reactivity Source________________________Value_____________ 

Critical Condition    1.000 

Depletion to Next Refueling   0.05  to 0.08 

Temperature Swing, Cold to Hot  0.02  to 0.05 

Power Swing, 0% to 100%   0.01  to 0.02 

Xenon and Samarium Poisoning  0.025 to 0.03 

Xenon Shutdown Override   0.01  to 0.02 

___________________________________________________________ 

Total keff at BOL                 1.115 to 1.120 

___________________________________________________________ 

 

 After one burnup period of perhaps a year, the central zone 

fuel assemblies are removed, the outer fuel assemblies are moved 

to the second zone, and new fuel is placed in the outer zone.  If 

we recognize that not all of the inner assemblies are uniformly 
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burned, then we can scatter load them in their respective zones 

to optimize the subsequent burnup.  If the reloading scheme is 

properly done, the core will eventually reach an equilibrium 

cycle where subsequent refueling will lead to identical burnup 

patterns. 

 In closing, it should be noted that even small gains in the 

uniformity of fuel burnup can translate to millions of dollars in 

reduced fuel costs.  Therefore, there is a very strong incentive 

for Utilities to optimize their fuel management procedures. 

 

 Problems 

 

9.1 Assume that 
135
I has a thermal neutron absorption cross 

section of  aI = 1 x 10
6
 barns. 

  a) Write the differential equations governing iodine 

and xenon in this case. 

  b) Write a general expression for the equilibrium 

reactivity worth of the mass-135 chain. 

  c) In the high flux limit, say    1015 n/cm2-s, what 

is the total reactivity worth of this chain.  Let 

 x = 0.3%,  I = 6.1%,   = 2.42, and   = 0.0075. 

  d) If the reactor is shut down from the equilibrium 

condition, write expressions for the xenon and 

iodine concentrations as a function of time after 

shutdown. 

 

9.2 A reactor has been operating at a constant flux level for a 

week. 

  a) Derive an expression for the time tmax at which 

peak xenon will be reached after shutdown. 

b)    Show that tmax is of the order of 11 hours for a  

   range of flux levels between 10
12
 and 10

15
 n/cm

2
-s 

   in a reactor fueled with 
235
U. 
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9.3 The ficticious fission product Virginium (
133
Vi) is produced 

with a direct yield of  v = 5% and decays with a 19.3-hr 

half-life ( v = 10
-5
 s

-1
) to Cavalierium (

133
Cv).  Cavalierium 

has an average thermal neutron absorption cross section of 

 ac = 2 x 10
6
 barns and also decays but with a shorter 9.65-

hr half life ( c = 2 x 10
-5
 s

-1
) to Wahooium (

133
Wh), which is 

stable.  Virginium, unfortunately, also has a very high 

thermal neutron absorption cross section of  av = 10
5
 barns. 

 If the reactor is infinitely large and operates at an 

average thermal flux level of 10
14
 n/cm

2
-s, answer the 

following: 

 

  a) Write differential equations governing the number 

densities of 
133
Vi and 

133
Cv as a function of time. 

  b) Write an expression for the equilibrium reactivity 

worth of this chain and obtain an approximate 

numerical value for  . 

c)   If the reactor is shut down from equilibrium      

  operation at the given flux level, what is the    

  peak reactivity worth of this fission product     

  chain. 

 

9.4 Assume that the A = 135 Chain for 
235
U fission starts with 

Tellurium, and that the half life of Tellurium is 5 hours 

instead of the actual value of 0.5 m.  Iodine is formed 

exclusively by the decay of Tellurium, and the capture cross 

 Wh(stable) 

hr 9.65

-

  

barns 102x

    

Cr 

 

 

  

hr 19.3 

-

 

barns 10

   

Vi 

   

5%    

133

6

133

5

133 
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section of Tellurium is negligible.  Take  f = 0.05 cm
-1
. 

 Answer the following: 

  a) Find an expression for the equilibrium reactivity 

worth of the A = 135 chain in the high flux limit. 

  b) Find the solution for X(t) after reactor shutdown 

from a steady state flux level of 5 x 10
13
 n/cm

2
-s. 

Plot this solution and compare with the solution 

given in Figure 9.1. 

 

9.5* You are given the xenon oscillation data shown in the 

accompanying figure for a core which uses 
235
U as fuel.  

Assume that the core is one-dimensional, has uniform 

properties everywhere and is describable by one group 

diffusion theory. 

   The core has the following parameters: 

   k = 1.06 

   L
2
 = 60 cm

2
 

height = 300 cm including extrapolation   

     = 2.42 

    x = 3 x 10
6
 barns 

    x = 2.1 x 10
-5
 s

-1
 

   c = 3 x 10
10
 fissions/s-watt 

  

 For this core, find the dimensionless effective flux level 

 , the average flux (n/cm2-s) and the average power density 

Q''' (watts/cm
3
). 

 Cs 

hrs 9.2

-

 

b 103x = 

   

Xe 

   

0.3% = 

hrs 6.7

-

 I 

hrs 5

-

 

 

Te 

    

6.1% = 

135

6
x

135

x

135135

T
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9.6 Discuss the various factors that would tend to make the 

effects of equilibrium xenon and samarium differ in reactors 

fueled with 
233
U, 

235
U, and 

239
Pu.  For a flux of   = 5 x 1013 

n/cm
2
-s, estimate the relative worths in $ for 

233
U and 

239
Pu 

fueled reactors compared to a 
235
U fueled reactor.  Use the 

data in the table below. 

                                                       

            quantity      
235
U            

233
U            

239
Pu 

       .0065  .0026  .0021 

    I  .0617  .0479  .0612 

    x  .0024  .0105  .0108 

                                                        

 

9.7 A 1000 MWT reactor operating near its rated power undergoes 

a fuel temperature change of 0.2F per megawatt and a 

moderator temperature change of 0.06F per megawatt.  If the 
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moderator temperature coefficient at BOL is +3 x 10
-4
 

 k/k/F, what range of values must the Doppler coefficient 

have for the reactor to be stable? 

 

9.8* Use the reactor model given in Section 9.8, but apply the 

prompt-jump approximation to simplify the equations.  Also 

assume that  f = 0 so that only the moderator temperature 

coefficient is effective. 

 Do the following: 

  a) Write the resulting set of equations in State 

Variable form, and define all the terms in the 

resulting vectors and matrices. 

  b) The parameters have the following numerical 

values: 

 

     = 10-5 s 

     = .007 

   Po = 2000 MWT 

    m = - 1.0 x 10
-4
/F 

     = 0.3 s-1 

   mf = 100,000 kg 

   cf = 300 J/kg-C 

   mm = 500,000 lbm 

   cm = 1.4 Btu/lbm-F 

   h = 5000 Btu/hr-ft
2
-F 

               A = 50,000 ft
2
 

 

Calculate the characteristic equation for the 

system and determine if the system is stable by 

evaluating the characteristic eigenvalues.  

Determine the natural frequency of oscillation of 

the system. 

c)   Set up the solution form for obtaining the   
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response of the system to a +10% change in power 

demand.  Do not actually evaluate these 

expressions, but explain how you would go about 

evaluating the solutions and sketch what you think 

the response would look like. 

 

9.9 You are given the three following equations describing a 

reactor system with prompt thermal feedback: 

  a) Find the steady state operating point conditions 

P(0), T(0), and  (0). 

  b) Linearize the above equations about the steady 

state operating point P(0), T(0), and  (0), 

writing the results in terms of the incremental 

variables  P,  T, and   . 

  c) Write the system of equations in vector-matrix 

form.  What kind of equation is this?  What kind 

of solutions does it possess? 

d)    Derive the required condition for system         

   stability. 

 

 9.10* In problem 9.9, assume that the reactivity  (t) = 

 feedback(t) +  ext(t).  Also assume that  f is negative. 

Using Laplace transforms, calculate the transfer function 

between the external reactivity and the reactor temperature, 

defined as 

 

).reactivity feedback re(temperatu   )T  -  (T  =      

 

);P removal heat constant  with(fuel      P  -  P  =  
dt

dT
      

 

       kinetics); reactor (prompt         P  =  
dt

dP

f 0

00
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  Using s = i , calculate and plot the magnitude, H(i ), 

of the transfer function versus the angular frequency  .  

Also calculate and plot the phase angle, P( ) = tan
-1
 

,
)H(i real

)H(i imag












 versus frequency.  Comment on the results. 

 

9.11 Assume that a power reactor has been operating at full power 

in the steady state.  The operator is requested to make a 

rapid change to 50% power and hold the reactor critical at 

the new state.  Take into account that the reactor has a 

negative power coefficient of reactivity, and that the xenon 

level will have to adjust to a new equilibrium value.  

Sketch the time-dependent changes of the reactor flux, 

temperature, control rod position, and iodine and xenon 

concentrations in terms of their fractional deviations from 

the initial states.  Explain the shapes of the curves. 

 

9.12 Using the fact that 1 watt = 3.1 x 1010 fissions/s in 235U, 

calculate the amount of 
235
U in grams consumed in one day of 

operation of the UVAR Reactor at 2 megawatts of power.  

Remember that not all absorptions in 
235
U lead to fission, 

e.g.,  a = 681 barns and  f = 582 barns for thermal 

neutrons.  Assume that all fissions occur at thermal (.025 

eV) energy.  Avagadro's number = 0.6023 x 10
24
 atoms/gm-

mole. 

 

9.13 Assume a constant thermal flux for the production of the 

fissile isotope 
233
U from the fertile isotope 

232
Th through 

the chain 

 .
(s)

T(s)
  =  H(s)

ext
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  a) Write the differential equations governing the 

concentrations of 
232
Th, 

233
Th, 

233
Pa, and 

233
U in the 

reactor assuming that all isotopes have a 

significant absorption cross section. 

  b) Make appropriate assumptions based on half-lives 

to simplify the governing equations. 

c)    Derive the concentration of 233Pa as a function of 

   time in a reactor operated at a constant flux    

   based on the equations derived in part b. 

 

9.14* A thermal reactor fueled with natural uranium operates at a 

constant flux level.  Derive expressions for the atom 

densities of 
235
U, 

238
U, 

239
Pu, 

240
Pu and 

24l
Pu as a function of 

time using the Laplace transform method. 
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 CHAPTER 10 
 

 

NEUTRON MODERATION 
 

 

 Thus far we have treated reactors using few-group diffusion 

theory (2 to 4 groups) to find keff for various geometrical 

configurations.  The macroscopic cross sections for each of these 

groups, which are averages of the actual cross sections (e.g., 

from the BNL-325 book) over appropriate energy spectra, have been 

supplied to us.  We must now turn to the problem of calculating 

the spectra used in the averaging process, and this implies going 

back to some of the basic physics of elastic and inelastic 

scattering of neutrons by various materials. 

 Here we treat the space-independent case because the problem 

becomes cumbersome otherwise, and to a good approximation space 

and energy are separable over small core regions.  We consider 

the energy range from fission down to the point where upscatter 

is possible, i.e., where the neutron can gain energy in a 

collision with a thermally vibrating atom.  Hence, we treat the 

range from 10 MeV down to about 1 eV.  This fortunately happens 

to include the resonance region.  The flux that we deal with is 

 (E) n/cm2-s-eV, the differential flux per unit energy.  The 

energy range from l eV down to essentially zero is treated later 

when we discuss neutron thermalization. 

 The cases that are treated in this chapter comprise most of 

the special situations where an analytic solution to the slowing 

down problem can readily be found.  These specific cases serve to 

illustrate the method of solving the integral equation obtained 

from the energy-dependent balance equation.  Some general 

characteristics of the flux solution are observed, including a 

transient behavior near and below the energies of neutron 
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sources, and sinks such as resonances.  For a carbon moderator, 

the transient behavior can affect the amount of resonance 

absorption.  The asymptotic flux,  (E), is found to vary as 1/E 

for most cases of interest, including those where mixtures of 

different isotopes are present and where absorption occurs during 

slowing down. 

 

 

10.1 Scattering Collisions 

 

 At this point, it is useful to review and expand upon the 

material given in Chapter 2 on the mechanics of scattering in the 

LAB and CM systems.  In the laboratory system, a neutron of 

velocity v approaches a stationary atom of mass A; the neutron 

scatters through an angle   and has a resulting velocity v', as 

shown in Figure 10.1.  Given the masses, plus the initial neutron 

velocity and the scattering angle  , one can completely specify 

the recoil angle  and the final energy of both particles using 

conservation of energy and momentum. 

 

 

 Fig. 10.1  Collision in the LAB System 
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 In the CM system, both particles approach each other.  The 

atom has the velocity of the center of mass, but goes in the 

opposite direction, i.e., 

while the neutron has the velocity 

 

After the collision, both particles scatter through the same 

angle  , and if the collision is elastic, both have the same 

velocities as they had originally, as shown in Figure 10.2.  This 

is a zero momentum system.  In the LAB System, the center of mass 

moves, while in the CM system it is stationary. 

 

 

 Fig. 10.2  Elastic Collision in the Center-of-Mass System 

 

 Since we observe the collision in the laboratory, why does 

one treat the CM system at all?  The primary reason is that the 

nucleus considers itself to be residing at the center of the 

 ,
1  +  A

v-
  =  V-  =  V CMc   

 v.
1  +  A

A
  =  V  -  v  =  v CMc  
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universe, and the probability of a reaction being isotropic in 

the CM system is high.  It is easier to convert the collision to 

the CM system than to convert the angular cross section to the 

LAB system.  There is a simple relationship between the two 

systems given by the vector diagram shown in Figure 10.3.  Use of 

the law of cosines allows one to derive an expression between the 

initial lab velocity of the neutron and its final velocity as a 

function of the CM scattering angle  .  The energy-equivalent of 

this expression is  

 

 Fig. 10.3  Diagram Relating Laboratory and CM Systems 

 

 Actually, in the general case, which includes inelastic 

scattering, a similar expression results.  Of course v  vc in an 

inelastic encounter since a Q value is involved.  Also, not all 

of the kinetic energy of the neutron can be used, since some of 

it goes into motion of the center of mass.  The available kinetic 

energy in the CM system is 

which decreases as A decreases.  One can define the term   for 
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the general reaction as 

In an elastic collision, Q = 0, and   reduces to  

The general relationship between the initial and final neutron 

energy is 

This expression reduces to the simple expression given previously 

for elastic scattering. 

 Look carefully at the scattering equation.  We know 

intuitively that the maximum energy transfer occurs for a "head-

on" collision, which gives the minimum energy to the scattered 

neutron.  Setting   = 180, so that cos   = - 1, gives 

Define the term alpha as 

For elastic scattering of neutrons on atoms of mass A, we obtain 

the expression 

We can therefore rewrite the energy transfer equation in terms of 

 , obtaining 
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We can also write an expression for the general case, but this 

expression is considerably more complicated than the one given 

above, except for the fact that E’ is still only a function of E, 

 ,   and Q.   

 For hydrogen,   = 0 and E’ can have any energy between E  

and 0 eV.  For carbon, A = 12 and   = 0.716.  Hence, the 

scattered neutron will have at least as much as 71.6% of its 

original energy.  For uranium,   = 0.983, and only 1.7% of the 

neutron's energy is lost, at most, in an elastic collision.  In 

the elastic scattering case, we can find out how E' varies with 

  by differentiation of Eq. (10.9).  The result is 

 All of the above information is obtained from the 

conservation laws alone and tells us nothing about the 

probability that a neutron will scatter through an angle  .  For 

this we must look at the cross sections that are determined by 

the nuclear properties of the atoms that do the scattering.  

Consider the diagram in Figure 10.4.  Most neutron scattering 

reactions possess rotational symmetry, that is to say the result 

for   ’ depends only upon   and is independent of the 

rotational angle  .  All of the neutrons that scatter through 

the polar angle   and end up in a ring-shaped solid angle 

element, change their energies from E to E’ within an energy 

interval dE'. Since E’ decreases as ’ increases, this can be 

written as the probability equivalence, 

where P is a probability which is normalized to unity over the 
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range of the variable. 

 

 Fig. 10.4  Neutron Scattering in the CM System with 

Rotational Symmetry 

 

 The angular probability can be obtained directly from the 

ratio of the differential angular scattering cross section to the 

total scattering cross section so that 

where 

Hence, 

But we already have an expression from the conservation laws 

 ,d d 
2

)P(
  =  d )  P( 





 sin  (10.12) 

 .
)(

    )P(
s

s



 
  (10.13) 

 .d 
)(

-   =   dE )E  P(E
s

s 


 sin'



 (10.14) 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

372 

  

relating dE' and d , given by Eq. (10.10).  Combining the two we 

obtain the general elastic scattering relationship 
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 For the important and often-encountered case of isotropic 

scattering in the CM system we have the relationship 

This gives 

                                           

This expression states that the probability of obtaining any 

energy E' between E and αE is uniform and is independent of E'.  

The corresponding energy scattering diagram is given in Figure 

10.5. 

 

 Fig. 10.5  Scattering of a Neutron from Energy E to E' 
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 For hydrogen,   = 0 and P(E  E') = 1/E.  Plotted, this 

looks like a uniform rectangular distribution extending downward 

from the initial energy of the incident neutron to zero as shown 

in Figure 10.6. 

   

 

 Fig. 10.6  Isotropic Scattering Probabilities for Hydrogen 

 

 

 

 Fig. 10.7  Scattering Probabilities for A > 1 
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For A > 1, the diagrams are similar but the scattering range is 

restricted as shown in Figure 10.7.  The difficulty met in using 

this scattering theory arises when one must consider the 

superposition of the results of multiple scattering, which must 

be treated by writing an integral balance equation. 

 

 

 10.2  Slowing Down Problem 

 

 In order to treat the slowing down problem in a medium, one 

must write a neutron balance equation describing the behavior of 

the neutrons.  The proper form of this equation for downscatter 

only is the time-independent Boltzmann equation, which is of the 

form, 

Now, recall that the scattering angle and the change in energy of 

the scattered neutron are not independent of one another.  To 

make the problem tractable, take the special case of an infinite 

medium (no leakage) having uniformly distributed isotropic 

sources in it.  For this case, we can average over all angles by 

integrating out the  dependence.  The result is a diffusion-

theory type equation of the form 
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This is the equation that will be specialized to handle 

moderation in hydrogen and other materials, with and without 

absorption. 

 

 

 10.3  Slowing Down in Hydrogen With No Absorption 

 

 The first case that we examine is the case where the reactor 

is composed entirely of hydrogen, which is not a very practical 

case.  We make the following additional conditions: 

 

 (1) The source emits neutrons at a single energy EO.  

Hence, using the energy-loss probability derived 

previously for a single scattering event, we have 

 (2) The energy loss scattering cross section can be 

replaced by the total scattering cross section times 

the energy loss probability, i.e., 

 (3) There is no absorption, and hence in this case  

 Using these conditions, we obtain the balance equation in 

the form 

where we already know that for hydrogen, 

Furthermore, we can define a term called the collision density, 
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which is just the scattering rate per cubic centimeter, as 

follows: 

Hence, we obtain the balance equation 

 This is an integral equation known as a Volterra equation of 

the second kind.  It can be solved by differentiation, 

remembering the rules for treating the integral when the quantity 

to be differentiated occurs in one of the limits.  The result is 

The equation is separable, and upon integration gives the result 

where C is an arbitrary constant of integration to be determined. 

Replacing this solution in the integral equation and evaluating 

the equation at E = EO, one finds the constant to be simply 

 

Therefore, we can state immediately for this case that the flux 

is 

If  s(E) is approximately constant, which is a good assumption 

for hydrogen, then we obtain the well-known 1/E flux behavior.  

Note that if E varies over seven decades (10 MeV down to 1 eV) 
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then the magnitude of φ(E) also varies over seven decades. 

 To improve upon this situation, we define a dimensionless 

logarithmic energy variable called the lethargy u, as follows: 

where EO is customarily taken to be 10 MeV.  Taking the 

derivative of both sides, we find that the lethargy increases as 

the energy decreases, 

More important, however, is the effect on the flux.  Since 

 

we find that 

or 

Therefore, we have obtained a flux function that is essentially 

constant in magnitude and is given in terms of a linear variable 

u. 

 It is also interesting to look at the form of the energy-

loss probability in terms of lethargy.  This function is 
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Hence, 

This function will be fairly useful in some of our subsequent 

work.  It is easier to see the integration ranges and limits when 

the energy variable is used, but the mathematics is often easier 

in terms of lethargy. 

 

 

 10.4  The Slowing Down Density in Hydrogen, No Absorption 

 

 We now define a new quantity called the slowing down 

density, q(E), which is analogous to a volumetric flow rate.  

This quantity represents the number of neutrons per cubic 

centimeter whose energy falls below the value of E per second.  

Consider for the moment that the only source of neutrons is those 

that have just scattered in the energy interval dE' about E'.  

Refer to the diagram in Figure 10.8, where the scattering medium 

is assumed to be hydrogen so that the scattering probability is 

P(E' E) = 1/E'.  From the definition, the differential number 

of neutrons per cm
3
-s that had their last collision in the 

interval dE' and scatter to any energy E" below E is the 

following integral, 

Note that the integration is to all final energies E" less than 

E. 
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 Fig. 10.8  Scattering from Energy E' Past Energy E 

 

 To obtain the total slowing down density we must now 

integrate over all initial energies E’ above E.  Upon integration 

over dE', the slowing down density becomes the double integral 

The integral over dE” can now be done immediately to give 

In terms of lethargy, which is a dimensionless variable, the 

corresponding equation is 

This expression could have been derived directly. 

 Now, consider that the primary source of neutrons is located 

at energy EO.  The slowing down density will consist of two 

contributions, which are: 

 

 (1) direct contribution, which comes from the first 

scattering collision of a source neutron.  Since the 

probability of scattering is uniform for all energies 
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below the source energy EO, the fraction of the source 

appearing below E is simply E/EO, the ratio of the 

energy ranges.  Hence, the first collision contribution 

is SOE/EO; 

 

 (2) multiple-collision contribution, which is the integral 

term given by Eq. (10.38) with an upper limit of EO.  

Hence, in the case of a direct source, the slowing down 

density is given by the equation 

 Comparing this result to Eq. (10.24) for the collision 

density, Fs(E), one finds that the entire right-hand side of the 

equation is simply E s(E) (E).  We can therefore use our 

previous solution of the integral equation to write down the 

answer, 

 

Since  (u) = E (E), the corresponding result in terms of 

lethargy is 

This result is physically obvious.  Since there is no absorption, 

all neutrons from the source must eventually slow down past any 

chosen energy E.  The usefulness of the slowing down density is 

that even when there is absorption, the slowing down density 

remains relatively constant and varies slowly with energy. 
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 10.5  Moderation for A > 1, No Absorption 

 

 When A > 1, there exists a minimum energy that a neutron can 

attain in a single scattering event.  The net effect is to limit 

the allowable ranges on the integrals in the balance equation, 

which produces a discontinuity in the direct source contribution 

to the collision density at the energy  EO for a mono-energetic 

source at EO.  This in turn produces a transient behavior over an 

energy range immediately below the source energy. 

 If we consider for the moment that the total collision 

density is made up of neutrons from the source that have had one 

collision, plus those that have scattered twice, plus those that 

have scattered three times, etc., we obtain the following series 

expansion: 

The partial collision densities, Fi(E), are to be determined.  We 

can accomplish this without solving the integral equation.  We 

know that the first term is the direct source contribution of 

once-scattered neutrons, namely, 

 We have two possibilities for the second collision: 

 

 (l) Scattering to an energy E, which is in the original 

energy range  EO < E < EO, as shown in Figure 10.9. 

 

 (2) Scattering to an energy below  EO, but only as far as 

 2
EO, as shown in Figure 10.10. 

 .  +  (E)F  +  (E)F  +  (E)F  =  (E)F ...
s 321  (10.43) 

                    

E <   E <                            

E <  E < E          
E

S

= EF










.00

,
)1()(

0

00

0

0

1




          (10.44) 

   



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

382 

  

 

 Fig. 10.9  Scattering Within the Energy Range EO to  EO. 

 

 

 Fig. 10.10  Scattering in the Energy Range Between E0  and 

                  E0
2

  

 

These two possibilities are taken care of by properly specifying 

the limits of the integral equation.  For the former, where E > 

 EO, the expression is 

For the latter case, where E <  EO, the scattering has a limited 

upper range giving 
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These two integrals can be evaluated giving                      

  The next term, F3(E), can be obtained using F2(E) as the 

source and properly specifying the limits in the three allowed 

energy intervals.  After a succession of these calculations, one 

finds that the general behavior of the ith function, Fi(E), 

becomes a Gaussian.  The first few terms are plotted in Figure 

10.11. 

 The total collision density as a function of lethargy is 

relatively constant after an initial transient behavior near the 

source energy.  This is shown in Figure 10.12.  Note that there 

is an asymptotic region that begins at a value of about  3
EO 

below the source energy EO.  This asymptotic behavior gives us 

the possibility of treating only collided neutrons if the source 

energy is high with respect to the energy region of interest.  

Furthermore, if the source is distributed over a range of 

energies, the convolution of the above results over the source 

distribution will give a considerably smoother collision density 

as a function of energy than does a mono-energetic source. 
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 Fig. 10.11  Partial Collision Densities vs. Energy 

       (From Introduction to Nuclear reactor Theory by J. Lamarsh, 1966, Addison Wesley) 

 

 Fig. 10.12  Collision Density vs. Energy 

    (From The Physical Theory of Neutron Chain Reactors by A.M. Weinberg and E.P. Wigner, 1958,  

     University of Chicago Press) 
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 The solution shown in Figure 10.12 can also be obtained 

directly by solving the integral equation for one collision 

interval at a time, starting at the source energy and moving 

downward.  This method is illustrated in a problem at the end of 

the chapter. 

 

 

 10.6  Asymptotic Slowing Down Theory, A > 1, No Absorption 

 

 In the asymptotic case, at energies far below the source 

energy, the slowing down density q(E) is governed only by 

neutrons that come from the adjacent energy range, E/  > E’ > E, 

and these neutrons can only be scattered down to an energy of 

 E’, at most.  The diagram is shown in Figure 10.13. 

 

 

 Fig. 10.13  Slowing Down in the Asymptotic Range 

 

 The equation for the asymptotic slowing down density becomes 

The quantity in the brackets is the fraction of neutrons that 

pass below energy E for an assumed uniform scattering 
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distribution.  If we next assume that the solution to the 

collision density balance equation is also asymptotic, we can 

test our assumption by direct substitution.  The form chosen is 

where the constant C is to be determined. 

 Upon substitution and integration, we obtain the following 

result for the slowing down density: 

On the other hand, if there is no absorption, then q(E) = SO.  

Substituting, we find that in the asymptotic region 

Hence, by replacing C in the assumed collision density solution, 

we obtain a result very similar to the result obtained for 

hydrogen, namely, 

In terms of lethargy, 

which is essentially constant, and hence 

 It remains to relate the new constant   to the other 

variables of interest.  Let us calculate the average change in 

lethargy, u  per collision over any allowed energy region in the 
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asymptotic range.  The change in lethargy from energy E to E' is  

Hence, 

Therefore, the constant   is equal to the average lethargy 

change per collision.  When α is inserted in terms of its 

definition as a function of the mass of the scattering atom, A, 

we obtain 

When A is not too small, 

 One finds that the average number of collisions required for 

a neutron to scatter from the source energy EO down to energy E 

is simply equal to the ratio u/ u , or 

The slowing down parameters for several isotopes are tabulated in 
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Table 10.1.  We can think of   as a type of scattering 

efficiency factor, where heavy atoms are not as efficient as 

hydrogen in slowing neutrons down. 

 

Table 10.1 

Typical Slowing Down Parameters 

     _______________________________________________________     
                                                     
     Material          Mass          α        ξ        n

*
 

     _______________________________________________________ 

     Hydrogen             1          0       1.000  14.5 

     H2O                  -          -       0.920  15.8     

     Deuterium            2      0.111       0.725  20.0 

     D2O                  -          -       0.509    28.5 

     Beryllium            9      0.640       0.209  69.4 

     Carbon              12      0.716       0.158  91.3 

     Oxygen              16      0.779       0.120      121. 

     Sodium              23      0.840       0.0825     176. 

     Iron                56      0.931       0.0357     407. 

     Uranium            238      0.983       0.00838   1730. 

                                                          __     

     *Slowing down from 2 MeV to 1 eV 

 

 The asymptotic slowing down density results are easily 

extended to the case of a mixture of different scattering 

isotopes because the equations are linear.  Basically, we obtain 

the same result as before with   replaced by an appropriate 

average.  Hence, the solution for the flux is simply 

 

 

The average value of   is a function of energy because of the 
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way in which the different isotopes are weighted by their 

macroscopic scattering cross sections.  The result can be shown 

to be 

 

 When the cross sections are relatively constant, the value 

of   is also relatively constant.  However, it should be noted 

that this averaging procedure is not strictly correct when 

hydrogen is present in the mixture since the hydrogen scattering 

contribution is not really asymptotic, i.e., some neutrons can 

scatter directly from the source.  Therefore, hydrogen is often 

treated separately from the other materials in a mixed medium. 

 

 

 10.7* Slowing Down in Hydrogen With Absorption 

 

 The Boltzmann equation for the space- and time-independent 

case, with uniformly distributed isotropic sources plus 

absorption, can be written in terms of lethargy, where the 

maximum source lethargy is u = 0.  The balance equation is the 

following, 

Consider the case of hydrogen atoms mixed with absorber atoms 

that are in essence "infinitely heavy," so that little energy 

transfer occurs in a scattering event.  The equation can be 

written so that there is a separate contribution for each 
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scattering term.  For the heavy atoms, the highest possible 

energy providing scattering to E is E/ , which corresponds to  

(u - n  l/ ).  Using the superscript H for hydrogen and A for 

absorber, we have the expanded balance equation, 

 

 Now, if the absorber atom is infinitely heavy,    1 and 

the amount of energy transferred in an elastic collision 

approaches 0.  The range on the second integral term becomes very 

small, and therefore the product (u)(u)A
s   can be factored out of 

the integral giving 

Hence, the second integral term approaches the total scattering 

rate for the absorber atoms.  As far as the original balance 

equation is concerned, the scattering due to the heavy absorber 

atoms appears in the same way on both sides of the equation, 

which means that it cancels out and we can ignore it.  The 

balance equation then becomes 

 

It will simplify our work to define a new total removal cross 

section, excluding heavy atom scattering, as 
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Also 

 

 Conversion to a Differential Equation.  In order to solve 

the above integral equation, we must convert it to a differential 

equation.  We accomplish this by a complicated series of steps.  

Recall that the slowing down density in pure hydrogen is given by 

Eq. (10.39).  This is equal to the integral term that appears in 

Eq. (10.65).  We, therefore, represent this integral by q(u), 

i.e., 

because in this case all the slowing down is accomplished by 

scattering by hydrogen.  We differentiate the above expression 

obtaining 

Since the integral term reappears, we can add Eqs. (10.66) and 

(10.67) to eliminate the integral and obtain 

 We return to the balance equation and replace the integral 

term by q(u).  This gives 

By defining the total collision density as F(u)  '

T (u) (u), 

which now contains absorption, one obtains the form 

 .  +    +        A
a

H
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s
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0
'   (10.66) 

 .du e)u()u(  -  (u)(u)  =  
du

dq u-uH
s

u

0

H
s '   (10.67) 

 (u).(u)  =  
du

dq
  +  q(u) H

s   (10.68) 

   S(u).-  (u)(u)  =  q(u) ’
T   (10.69) 
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The derivative of this expression is 

 Now, we have one expression that contains both q(u) and 

dq/du.  We also have an expression derived from the balance 

equation for each of these quantities.  Combining Eqs. (10.68), 

(10.70), and (10.71) to eliminate terms in q, we obtain the form 

This can be rearranged into a separable differential equation of 

the form 

 

 Nonabsorption Probability for Constant 
’
Ta / .  The above 

equation is a first-order, inhomogeneous ordinary differential 

equation with variable coefficients.  We have succeeded in 

converting the integral equation into a differential equation, just 

as we did for the case where there was no absorption.  However, we 

can't really go much further unless we specify the source and 

simplify the cross section dependence on energy.  Hence, we will 

assume that 
’
Ta /  = constant, and also assume that the source is 

mono-energetic and of strength So at energy Eo. 

 Take the energy-dependent first-collision source to be 

The derivative of this expression is 

   S(u).-  F(u)  =  q(u)  (10.70) 

 .
du

dS
  -  

du

dF
  =  

du

dq
 (10.71) 
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 .e  S=  S(u) -u
0  (10.74) 
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Hence, if we apply our two restrictions, Eq. (10.73) reduces to a 

first-order equation with constant coefficients, namely, 

 This equation can be solved using the integrating factor 

to obtain the solution 

To find the constant of integration, we evaluate Eqs. (10.78) and 

(10.74) at u = 0 to obtain 

Hence, the final result is 

or 

 Note that this is the same 1/E flux distribution obtained 

previously for hydrogen, multiplied by a factor 

We can refer to p(u) as being the non-absorption probability, 

 .eS -  =  
du
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since it approaches unity as  a approaches zero, and approaches 

zero as  a becomes very large. 

 We can also write down a direct physical definition for the 

non-absorption probability by integrating the total absorption 

rate down to lethargy u normalized to the corresponding total 

source emission rate.  This gives the equation 

The above result is always valid, but the calculation depends 

upon first knowing  (u).  Another useful result of the same type 

can be obtained by combining Eqs. (10.68) and (10.69), which 

gives 

This equation states that the change in slowing down density in a 

lethargy interval du wide is equal to the source contribution 

minus the absorption taking place in the interval.  

Unfortunately, if the absorption varies rapidly in the interval, 

the flux usually also varies rapidly making it difficult to 

calculate dq/du accurately. 

 

 

 10.8* Special Cases of Slowing Down With Absorption, A > 1. 

 

 In the general case, we cannot analytically solve the 

slowing down equation for moderators having A > 1 in the presence 

of absorption.  However, we can obtain approximate results for 

certain special cases, and these serve to give us some insight 

into the types of solutions expected in general. 
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 Constant  a/ s.  For example, let us look at the asymptotic 

case where the ratio of absorption to scattering is constant as a 

function of energy.  We assume that  a(u)/  s(u) = constant and 

 a is small compared to  s.  We then solve the integral equation 

in the asymptotic region, far from the source energy.  In terms 

of collision density, the balance equation is 

 

                    removal        inscatter  

 

                     .du
)  -  )(1u(

e)uF( )u(
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T

u-u
s

u

n1/-u

'
 




 
             (10.85) 

 

The key point, which makes a solution possible, is the fact that 

the ratio  s/ T is constant and can be taken outside of the 

integral.  Then, as shown in Ferziger and Zweifel, a Laplace 

transform method leads to the approximate asymptotic solution, 

 Instead of deriving this solution directly, we simply insert 

it into the integral equation and derive the conditions for its 

validity.  Upon substitution, one obtains 

Now, if the absorption is small, so that  a <<  s and  t   s, 
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then 

 

and 

leading to an equality. 

 For the case where absorption is small and the ratio of 

absorption to scattering is not a function of energy, the slowing 

down density indeed varies slowly with lethargy.  For this case 

we can compute the non-absorption probability directly from Eq. 

(10.83).  For a unit source at u = 0, 

Inserting  (u) = F(u)/ T(u), we obtain 

Note that this result is very similar to the result obtained for 

the case of hydrogen mixed with a non-scattering absorber.  We 

have simply multiplied  T in the denominator by  .  Therefore, 

the average logarithmic decrement enters whenever A > 1, both in 

the collision density and in the non-absorption probability.  The 

corresponding flux varies as 
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 Slowly Varying Capture.  Another special case is the case of 

slowly varying capture.  We use the Grueling-Goertzel 

approximation, which consists of employing a truncated Taylor 

series expansion for the collision density in the asymptotic 

slowing down region.  Recall that the slowing down density is 

strictly a function of the scattering rate in the medium, which 

is defined as  

As before, we write the asymptotic balance equation 

In terms of lethargy this becomes 

where the transition between forms is trivial when one recalls 

that 

 A second useful equation can be obtained by taking the 

derivative of q with respect to u in a manner similar to that 

used for hydrogen mixed with a non-scattering absorber.  Using 

Leibniz's rule, the result is 

 Now, we make the approximation that Fs(u') varies slowly in 

a lethargy width so that it can be expanded in a truncated Taylor 

series about Fs(u) in both equations.  What happens, of course, 

is that Fs(u') is essentially brought outside of the integral 
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leaving an easily integrated function.  Let 

Equation (10.91) becomes 

We have already evaluated the first integral in Eq. (10.94).  Its 

value is 

The second integral is 

In terms of the above definitions, we have the result, 

 The second equation, Eq. (10.92), becomes 

 .
du
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The first integral in Eq. (10.98) is unity and the second is in 

fact equal to - , so that we obtain the differential equation 

 We can therefore combine Eqs. (10.97) and (10.99), 

eliminating the derivative dFs/du to obtain the single equation 

In order to proceed further, we require another equation 

describing dq/du.  Recall that, in the absence of sources, Eq. 

(10.84) states that the slowing down density varies as 

Insertion of this result into Eq. (10.100) gives 

If we now divide through by   and define   as 

we obtain the flux expression for slowly varying capture, namely, 
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 By combining this result with Eq. (10.101) for dq/du, we 

obtain a separated differential equation in q(u), namely, 

This equation can readily be integrated using the initial 

condition that q(0) = SO to obtain 

The exponential term is easily recognized as a form of the non-

absorption probability 

Hence, the final form for the flux solution is 

Note the similarity to previous equations.  The primary 

difference is that  a has its own coefficient.  Values of the 

coefficients for several common moderators are given in Table 

10.2.  One sees that the magnitudes of   and   are not greatly 

different, so that using the quantity   T is not a bad 

approximation to using the sum of   s and   a in the non-

absorption probability expression, especially if  a is small 

compared to  s. 
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     Table 10.2 
 

  Slowing Down Parameters for Selected Moderators   
                                                                  
______________________________________________________________  
 

   Element        A                                          
______________________________________________________________   

                                                               

Hydrogen          1         0              1.000         1.000 

Deuterium         2         0.111          0.725         0.583 

Beryllium         9         0.640          0.209         0.149 

Carbon            12        0.716          0.158         0.116 

______________________________________________________________   

                                                                 

 

 10.9  Final Comments 

 

 The net conclusion from all of the analytic solutions 

obtained thus far is that the flux over most of the energy range 

of interest varies as approximately 1/E.  This is caused by the 

basic nature of the scattering process.  Smooth absorption acts 

to slowly decrease the flux as energy decreases relative to the 

flux solution without absorption.  Hence, the use of a 1/E 

weighting function to process multi-group cross section libraries 

is quite reasonable. 

 Up to this point we have examined cases where  a is small, 

or where it is essentially constant ( a/ T = constant), or where 

it varies slowly in the energy range of E to  E.  A resonance 

violates all of these conditions.  In a resonance, the absorption 

is large, it does not vary in proportion to the scattering cross 

section and it varies rapidly in a small energy interval.  Hence, 

a more sophisticated treatment is required.  The treatment of 

resonances, and slowing down in the presence of resonances, is 

covered in Chapter 11. 
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 Problems 

 

10.1 Suppose that the differential elastic scattering cross 

section for hydrogen at some energy is given by the 

expression 

 where   is the CM scattering angle. 

  a) Derive the total scattering cross section at this 

energy. 

         b) Derive the average logarithmic energy decrement 

 , i.e., the average increase in lethargy per 

collision, assuming that the differential cross 

section for hydrogen is as given above. 

      c) What is the energy distribution of once scattered 

neutrons given a mono-energetic neutron source of 

energy EO?  Plot this probability distribution, 

P(EO  E) vs. E, if EO = 1 MeV, for assumed values 

of a, b and c. 

 

10.2 Show that the elastic scattering probability P(E  E') is 

normalized to unity, irrespective of whether or not the 

scattering is isotropic in the CM system. 

 

10.3* Consider a mono-energetic neutron source which is uniformly 

distributed in a non-absorbing infinite medium of mass  

 A > 1.  For the successive collisions method, the balance 

equation governing the collision density of all neutrons 

that have suffered three collisions after emission from a 

mono-energetic source at energy EO is of the form 

 ,c  +   b  +  a  =  )(s  2coscos   

  ,
E)  -  (1

dE )E(F
  =  (E)F
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     valid over ? > E > ? 

   a) For each region which contributes to F3(E), draw 

the appropriate energy scattering diagram or 

diagrams which allow determination of the limits 

of the integral.  Replace all question marks with 

the appropriate values. 

       b) Derive an analytical expression for F3(E) which is 

valid over each allowable collision interval. 

          c) Evaluate F3(E) and its first two derivatives at 

the boundaries of each allowable collision 

interval, and comment on the results. 

 

10.4* Consider a mono-energetic neutron source at energy EO which 

is uniformly distributed in a non-absorbing medium of mass  

 A > 1.  We shall make a separate neutron balance over each 

successive collision interval. 

  a) Derive the integral balance equation for the 

collision density in the first collision interval, 

F
(l)
(E), valid between Eo and αEo. 

         b) Differentiate the integral equation found in part 

a) and then integrate the resulting differential 

equation to obtain an expression for F
(l)
(E). 

          c) The balance equation for the collision density in 

the second collision interval is of the form 

               valid over ? > E > ?           

   Draw the appropriate energy scattering diagrams 

that allow determination of the limits of the 

integrals.  Replace all question marks with the 

appropriate values. 

       d) Differentiate this equation and integrate the 

 ;
E)  -  (1

dE )E(F
  =  (E)F

?

? 



 

'(?)
)2(
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resulting differential equation to find an 

expression for F
(2)
(E). 

      e) Discuss the consequences of having a mixture of 

two scattering isotopes instead of just one. 

 

10.5 Derive the expression for   given by Eq. (10.50) by 

evaluating the integral  given in Eq. (10.48).  Show that u  =   

by evaluating the integral in Eq. (10.56). 

 

10.6 Assume that the ratio of scattering to absorption is equal 

to 100 in a material having the moderating properties of 

beryllium, independent of energy.  For moderation from 10 MeV to 

1 eV, what is the non-absorption probability computed according 

to the constant  a/ s and slowly-varying capture models? 
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 CHAPTER 11 
 

 

 

SLOWING DOWN IN THE PRESENCE OF RESONANCES 
 
 

 

 Reactors are composed of a combination of fuel, coolant and 

structural materials.  For a typical reactor, there is an energy 

range from l0 MeV down to approximately 10 KeV where essentially 

pure slowing down takes place.  In this region, the problem can 

be treated using the methods of Chapter 10.  Below 10 KeV, many 

important materials possess resonances, requiring a modified 

treatment.  For example, all reactors contain fissile and fertile 

materials, such as uranium, plutonium and thorium, each of which 

has a large number of closely spaced resonances above 

approximately 5 eV.  Many control poisons, such as silver, 

indium, cadmium, gadolinium and hafnium have significant 

resonances in the eV range.  Even sodium, a coolant for fast 

reactors, has some important resonances. 

 Before proceeding to the calculation of resonance absorption 

during slowing down, we must first examine the structure of a 

single resonance.  To complicate matters, the absorber atoms are 

in thermal motion with speeds comparable to those of the neutron. 

 This relative motion gives rise to a Doppler effect, which must 

also be included.  Fortunately, the Doppler effect is an inherent 

safety feature of nuclear reactors that helps to mitigate the 

effects of an accidental positive-reactivity power excursion.  

Under these circumstances, the fuel heats up, resonance 

absorption increases and this provides a negative reactivity 

insertion that reduces the power again. 

 To complicate matters even more, fuel and moderator 

materials are usually heterogeneously arranged in order to allow 
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some of the neutrons to bypass the resonances by having a portion 

of their scattering collisions occur in the moderator region 

rather than in the fuel.  The formulation of the heterogeneous 

neutron balance equation in a spatial cell requires the 

development of ideas such as region escape probabilities, Dancoff 

corrections for the presence of adjacent cells, and the concept 

of spatial reciprocity. 

 Finally, all of these ideas are put together into the 

formulation of a set of slowing down equations that can be solved 

by computer.  The equations described here are used in the GAM 

code, and form what is known as a multi-group P1 treatment.  We 

use the GAM code separately for each type of fuel assembly or 

reflector region to obtain the few-group cross sections for the 

fast groups of a multidimensional reactor design code such as 

EXTERMINATOR or VENTURE.  The method of obtaining the 

corresponding few-group cross sections for the single thermal 

group of each assembly is the subject of Chapter l2. 

 

 

 11.1 Resonance Cross Sections 

 

 Most neutron reactions in the energy range of interest for 

nuclear reactors proceed via a two-step process.  First, the 

neutron is absorbed, thus forming an excited compound nucleus.  

Subsequently, the compound nucleus decays through various exit 

channels such as scattering, radiative capture, fission, etc.  

The interaction of the neutron with the nucleus is wave-

mechanical in nature, and can be modeled by solving the 

Schrödinger wave equation both inside and outside of the compound 

nucleus taking into account an appropriate potential energy 

distribution.  Since neutrons are uncharged particles, there is 

no Coulomb barrier to be overcome, so that the potential energy 

distribution can be approximated by a uniform square potential 
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well existing inside the nuclear volume. 

 The resulting cross section curve as a function of incident 

neutron energy exhibits a resonance structure, as seen 

symbolically in Figure 11.1.  The resonance peaks are related to 

the virtual energy levels in the compound nucleus, which are a 

function of the angular momentum I, binding energy B and the 

nuclear radius R of the nucleus in question.  A detailed 

examination of an actual cross-section curve indicates that the 

values of the cross sections in the resonance peaks may be 

several orders of magnitude greater than in the valleys.  In 

heavy nuclei, the levels are narrowly spaced and many low-energy 

resonances are observed.  In light nuclei, the levels are widely 

spaced and the behavior of the cross sections is relatively 

smooth over a wide range of energies. 

 

 

 Fig. 11.1  Resonance Cross section vs. Virtual Levels in the 

                Compound Nucleus 

 

 A standard source of experimental cross section data in 

graphical form is the Brookhaven National Laboratory BNL-325 

report, which is sometimes referred to as the "barn book".  For 
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computational purposes, numerical data are extracted from 

evaluated nuclear data files such as the American ENDF-B file or 

the European JEF file. 

 

 Formation of the Compound Nucleus 

 

 In the case of narrowly-spaced resonances, which are close 

enough to overlap, the solution to the Schrödinger equation is 

fairly complicated.  However, for a single isolated resonance, 

located at energy Er, the solution can be put into a fairly 

simple form, namely, 

The factors that appear in the equation are defined as follows: 

 Ec   is the kinetic energy of the neutron in the CM system; 

  r =  pr is the neutron wavelength, where the quantity pr is 

the momentum of the system at the resonance energy    

computed using the reduced mass; 

 g    is defined as 

  and it is a statistical spin factor which is  

proportional  to the angular momentum of the target 

nucleus, I, and   the angular momentum of the compound 

nucleus J; 

     is the total level width of the resonance in energy 

units, defined as the total decay constant for de-

exciting the level multiplied by   , which is the 

rationalized Planck's constant.  The total level width 

is the sum of the partial level widths, i.e.,  

 .
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        =  + r
n  + f + ...; 

     is the radiative capture width; 

   r
n   is the neutron emission width evaluated at the 

resonance energy; and 

   f  is the fission width. 

          

The above equation is known as the Breit-Wigner single level 

formula, originally derived in l936.  Other forms, such as the R-

Matrix representation, exist for the more complicated cases. 

 If one evaluates the Breit-Wigner expression at the 

resonance energy, that is at Ec = Er, one obtains a value for the 

maximum cross section for the formation of the compound nucleus, 

namely, 

Furthermore if the resonance is fairly narrow so that the factor 

E/E cr   1, then the cross section evaluated at an energy of  

Ec = Er ± /2 is approximately 

 In principle, one can obtain the total emission width  

experimentally by measuring the width of the resonance peak at ½ 

the maximum cross section value.  In practice because of the 

finite resolution of available neutron monochromators and 

detectors, the determination must be made indirectly by measuring 

the neutron transmission through both thin samples and thick 

samples and relating the results to the area under the resonance 

curve.  It can be shown quite generally that the area under a 

narrow resonance, where E/E cr   1, is 

 .g4  =      )E(
r
n2

rrrCN   (11.2) 
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This is true irrespective of instrumental resolution or 

broadening caused by thermal agitation of the absorber atoms. 

 

 Radiative Capture.  The de-excitation of the compound 

nucleus is directly proportional to the ratio of the level width 

of the particular exit channel under consideration to the total 

level width.  Hence, for radiative capture the appropriate 

expression is 

A similar expression can also be written for fission, when it is 

energetically possible.  The capture cross section can be written 

in a fairly convenient form by defining a new dimensionless 

quantity y as 

In terms of the maximum total cross section, the capture cross-

section expression becomes 

 At low energy, well below the resonance energy, all of the 

factors in the equation are essentially constant except for Ec.  

The factor (Ec - Er)
2
 is large and almost constant so that the 

low-energy behavior is approximately 

 .
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This is the well-known 1/v cross section behavior that is 

exhibited by reactions such as 
10
B, 

109
Ag, 

6
Li, 

l97
Au, 

ll3
Cd, and 

ll5
In at energies well below their lowest resonance. 

 Since the neutron wavelength is inversely proportional to 

velocity, the wavelength of a slow neutron is very much greater 

than the size of the target nucleus and essentially all such 

neutron interactions are s-wave, i.e., head-on collisions with 

zero angular momentum. 

 

 Elastic Scattering.  In the case of elastic scattering 

another quantum-mechanical effect appears that does not proceed 

through the formation of a compound nucleus.  This is scattering 

from the nuclear surface.  It is called potential scattering, and 

it corresponds to a billiard ball effect.  The cross section at 

low energy is ~ 4 R
2
, which is the surface area of a hard 

impenetrable sphere with a radius equal to the nuclear radius R. 

The projected area of the sphere is R
2
; the factor 4 appears 

due to quantum effects. 

 Unfortunately, the formation of a compound nucleus competes 

with the potential scattering, leading to an interference term in 

the cross section formula.  For s-wave scattering, the equation 

is  

In terms of y and r, this equation becomes 
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 In the equations for radiative capture and elastic 

scattering, the wavelength and the neutron width are both 

evaluated at the resonance energy Er.  As a matter of fact, the 

neutron width is not a constant for a given resonance, but varies 

directly proportional to the neutron velocity.  This accounts for 

the factor E/E cr  appearing in the radiative capture equation.  

The Breit-Wigner equation is often written in terms of the actual 

wavelength and the actual neutron width.  The form is very similar 

to that given above because the factors containing energy 

conveniently cancel, i.e., 

Hence, we have an equation for radiative capture, 

and for elastic scattering, 

The sum of the two, when f = 0, is the total cross section 

 One sees that the interference term, if it is large, makes 

the elastic scattering cross section curve quite non-symmetric, 

while the potential scattering term provides a constant 

background cross section.  A typical scattering cross section 

curve in the vicinity of a single isolated scattering resonance 

is shown in Figure ll.2.  On the other hand, the absorption cross 

section due to radiative capture is almost symmetric except for 

the effect of the E/E cr  dependence, which gives a l/v tail at low 

energy as shown in Figure 11.3. 
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 Naturally, the total cross section is the sum of all of the 

possible modes of interaction, so that any given resonance is 

some linear combination of the two curves.  The predominant form 

of interaction can often be discerned by examining the symmetry 

of an experimentally measured resonance curve. 

 

 

 Fig. 11.2  Elastic Scattering Cross Section vs. Energy 

 

 

 Fig. 11.3 Radiative Capture Cross Section vs. Energy for 

Pure Capture 
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 11.2  Doppler Effect 

 

 At energies in the resonance region of 
238
U, that is, from 

about 6 eV up to a few keV, the interaction rate of neutrons with 

uranium atoms may be influenced by the thermal motion of the 

atoms.  Specifically, we have to calculate the reaction rate 

taking into account the relative velocity between the atom and 

the neutron that strikes it.  This is called the Doppler effect. 

 For the moment, assume that all of the neutrons are 

traveling in a beam along the x-axis.  This can be relaxed later 

by superposition of neutrons traveling in all directions.  In 

this restricted case the velocity diagram for an interaction with 

a given atom is a vector diagram, as shown in Figure 11.4.  We 

know that the kinetic energy of the two particles in the CM 

system is given in terms of their reduced mass r  and the 

relative velocity between the particles.  It is 

where v
2
r  is a scalar, equal to 

 

 Fig. 11.4 Relative Velocity Diagram for a Neutron-Nucleus 

Interaction 
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Expanding out, we obtain 

Hence, we can express the CM energy in terms of the scalar 

neutron velocity and the x component of the velocity of the atom 

in the LAB system.  In addition, for atoms such as uranium, the 

reduced mass is essentially equal to the neutron mass, i.e.,  

r   m.  The CM energy is then related to the neutron energy and 

the x component of the atom velocity by the expression 

 

 Now we examine the reaction rate assuming that we have a 

large number of atoms whose velocities are distributed according 

to some statistical law.  What we would really like to do is to 

define an effective or average cross section such that the 

product of the neutron flux and the effective cross section gives 

the same reaction rate as the case where the relative velocity 

between the neutron and the atom is considered over the entire 

distribution of atom velocities.  The defining expression is 

We know Ec in terms of Vx.  Furthermore, we know vr in terms of 

Vx.  Hence, all we need is the vector velocity distribution of 

the atoms, N(V ), in order to carry out the integration.  You are 
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probably most familiar with the scalar Maxwellian distribution, 

which gives the number of particles having a given speed as a 

function of speed.  This particular function is obtained by 

weighting a Gaussian distribution function by the volume element 

in velocity space, that is, 

where M is the mass of the atom, k is Boltzmann's constant, and T 

is the absolute temperature of the medium.  The scalar 

distribution, which has a nonzero mean, is plotted in Figure 

11.5. 

 

 

 Fig. 11.5  Scalar Maxwellian Distribution of Atom Velocities 

 

 In our specific application, we are interested in the 

directed distribution, which is the portion given above in square 

braces.  This can be expanded into the form 
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Naturally, V  = i Vx + jVy + k Vz.  The directed distribution has a 

zero mean, which simply states that as many particles go in one 

direction as go in exactly the opposite direction.  This 

expression is separable in each of the three directions and has 

the normalization 

 Since only the x component of velocity appears in the 

reaction rate integral, the integrals over y and z can be done 

immediately, giving unity.  The remaining integral contains just 

the x component and is of the form 

 .dV )E(e
kT2

M
 N vn  =  T)(E,Nnv xc
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-
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2
x       (11.23) 

The expression for the effective cross section can then be 

obtained by canceling common terms and dividing through by v. 

 All of the terms inside the integral are now known as a 

function of Vx.  If we use the Breit-Wigner form for the cross 

section, the integral can be evaluated by making an appropriate 

change of variable.  We must evaluate the expression separately 

for 
c
 and for .

s
 For radiative capture, the expression becomes 

Recall that r   m and M/m = A, which is the atomic mass number 

of the atom.  

 Let the following substitutions be made: 
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Upon subtraction, 

Since x is not dependent upon Vx, the derivative of this 

expression is 

 

 The integration over Vx can now be replaced by an equivalent 

integration over the variable y.  The limits remain the same as 

before because the minus sign is absorbed in the variable change. 

The factor in the exponential term is expressed in terms of  

(x - y) as follows.  Write 

and define a new coefficient 

In terms of this coefficient, 

 Using the above definitions, a final form of the expression 
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for the effective capture cross section is obtained.  The result 

is the temperature-dependent cross section, 

The Doppler function, x),( , has been computed numerically.  It 

is given in Table 11.1, and it is also available in the form of a 

graph. 

 It is also convenient to define the term ΓD, called the 

Doppler width, in the following fashion: 

 

This is a measure of the width of a narrow energy line due to 

pure thermal agitation of the atoms.  By comparison, one sees 

that the factor 

is a measure of the actual width of the resonance compared to a 

temperature-broadened line. 

 The important thing to notice is that the Doppler effect 

competes with the natural line width and hence there should exist 

some limiting functional dependence.  When D >> , which could 

occur at high temperature, the natural shape of the resonance is 

masked by the Doppler effect and the cross-section curve is a 

Gaussian peak.  When D << , The Doppler effect is negligible 
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and the cross-section curve has the pure Breit-Wigner shape. 

 The latter point can be proven fairly easily.  As T 

approaches absolute zero, D becomes very small compared to  

and   .  The function 

where  is the Dirac delta function.  Hence, 

which is the natural line shape. 

 Furthermore, the area under the Doppler shape function is 

independent of x, and in particular is given by the integral 

The effect of changing the temperature is shown in Figure 11.6, 

where the area under the two curves is the same. 

 

 

  Fig. 11.6   Capture Cross Section vs. Temperature 
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 The interference part of the scattering cross section is 

also Doppler broadened.  Following a similar derivation, we 

obtain the interference Doppler shape function 

x),( is related to x),( by the differential equation 

This function has also been tabulated and is given in Table 11.1. 

When the Doppler width is small, x),(  approaches the natural 

line shape, i.e., 

Furthermore, x),(  is an odd function, so that 

For the interference term, the effect of changing the temperature 

is shown in Figure 11.7. 

 

 Fig. 11.7  Interference Scattering Contribution vs. 

Temperature. 
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 If we define p  4 R
2
 for the potential scattering, then 

the complete Doppler-broadened scattering term becomes the 

temperature-dependent cross section, 

 We have derived the Doppler effect based upon the use of a 

Maxwellian distribution for an ideal gas.  Actually, one can use 

other distributions, for example the Debye distribution that 

applies to solids.  It can be shown that in this case, the same 

type of result is obtained but the temperature is replaced by an 

effective temperature T*.  For temperatures of interest in 

reactor fuel elements, T*  T. 

 In actual practice, a nucleus has many resonances including 

some at high energy that are not resolved.  The total effect upon 

the reactor is obtained by summing the effect of each resonance 

modified by the Doppler effect.  The lowest energy resonances 

tend to be the most important, since this is where the thermal 

motion is comparable to the energy of the neutrons and where the 

Doppler effect is greatest. 

 

 

 11.3  Slowing Down in the Presence of Resonances 

 

 Now that we have obtained expressions for the absorption and 

scattering cross-section terms in a resonance, we must return to 

the problem of computing the flux and the absorption rate in the 

vicinity of a resonance.  In the general case, for an arbitrary 

mixture of moderators and absorbers, an analytic solution is not 

possible.  However, solutions can be obtained in certain special 

cases, notably when the resonance is narrow compared to an 

allowed scattering interval Δu = n  1/ , and when the resonances 

are widely spaced so that the effect of one resonance does not 
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interfere with the behavior of another resonance. 

 

 Table 11.1   

Tables of x),(  and x),(  

 

 

 Qualitatively, in the vicinity of a resonance the flux will 

decrease, sometimes appreciably due to the significant increase 

in the total cross section.  One can therefore expect at least 

three different types of complications to arise in the slowing 

down solution.  These are: 

 

 1. Transient solution behavior - as noted previously, the 

collision density exhibits a transient behavior up to 

~
3
E’ below an energy E’ where there is a neutron source 

or sink; 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

424 

  

 2. Absorption effect - as the flux decreases in a resonance, 

the absorption is lessened compared to that which would 

occur if the flux remained constant with lethargy.  This 

is called energy shielding.  If a lumped arrangement of 

fuel and moderator is assembled, the relative amount of 

absorption will be different from the case where the 

atoms are intimately mixed because of spatial self-

shielding.  This has consequences not only in reactor 

design but also in reactor safety because the Doppler 

coefficient of reactivity feedback is different in the 

two cases; 

 3. Variation in  - if the scattering cross section varies 

rapidly with E, the value of (E), which is averaged with 

respect to the macroscopic cross sections of the 

constituent atoms, will also vary.  This in turn 

complicates the calculation of the collision density. 

 

 Fig. 11.8 Slowing Down through a Scattering Resonance in an 

Iron-Sodium Mixture 

(From The Theory of Neutron Slowing Down in Reactors, by J. Fertziger and P. Zweifel,    

1960, Pergamon Press) 
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As an example of the type of behavior that one would see in a 

single isolated scattering resonance, say a sodium resonance in 

an iron-sodium mixture in a fast reactor, refer to Figure 11.8.  

In addition to observing the characteristic asymmetric shape of 

the scattering resonance, one sees that the collision density 

decreases in the resonance region and then recovers because a 

greater proportion of neutrons actually scatter from the lighter 

sodium atoms in the iron-sodium mixture and hence lose more 

energy on the average than they do outside the resonance.  The 

flux as a function of lethargy exhibits a marked decrease that is 

almost the inverse of the scattering cross section curve.  

However, the most important point is that the behavior of the 

collision density is not asymptotic, that is to say F(u) is not 

constant, and the entire solution must be obtained numerically. 

 

 Single Isolated Absorption Resonance.  Consider now the case 

of a strong absorption resonance in a situation where the total 

scattering cross section is constant and absorption occurs only 

in the resonance.  If an asymptotic flux is established one 

collision interval above the resonance, we can write a neutron 

balance equation about the interval that contains the resonance. 

If absorption begins at lethargy uo, the in-scattering integral 

can be split into two parts and the first part can be integrated 

directly by assuming F(u) = 1/  and s = T for u < uo.  We have 

the expression 

This equation can be treated in the same manner as before.  To 

solve for F(u), we differentiate to convert the equation to a 
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differential equation, and then integrate using an integrating 

factor.  Note that the sharply varying ratio s/ T appears 

inside the integral term to complicate the solution.  By applying 

the method of successive collision intervals to obtain the 

solutions in lower-energy intervals, we can obtain a Placzek-type 

transient solution.  However, because of the complexity of the 

results, reliance is usually placed on direct numerical solution 

of the integral equation. 

 

 

 11.4  Homogeneous-Medium Resonance Absorption 

 

 In general, the absorption rate in a single resonance is 

given by the integral 

The form of the absorption cross section is known in terms of the 

Doppler-broadened Breit-Wigner formulation, but the flux as a 

function of energy is usually not known exactly so that it must 

be approximated. 

 As we have seen previously in the case of a broad scattering 

resonance, the collision density may vary significantly over the 

extent of the resonance, forcing us to solve the integral balance 

equation numerically to obtain the true collision density; the 

absorption rate must then be computed numerically using the 

collision density solution.  On the other hand, if the resonance 

is not too broad, one can make some simplifying assumptions that 

allow a fairly straightforward semi-analytic treatment of the 

equations. 

 If the resonance can be considered to be narrow compared to 

the average energy loss in an elastic scattering collision with 

the atoms in the medium, then the neutrons entering the resonance 

 dE. (E)(E)  =  rate Absorption aresonance
 (11.43) 
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will consist essentially of those neutrons that had their last 

scattering event in the collision interval just above the 

resonance.  In other words, the neutron source can be considered 

to be asymptotic.  The flux as a function of energy then has the 

simple approximate form, 

which is the expression we shall use in the absorption rate 

equation.  The implication of using this expression is that the 

collision density F(u) = 1/  is constant over the range of the 

resonance, which is not exactly true. 

 We must now define what we mean by a "narrow" resonance.  

Specifically, let us define the "practical width," p, as the 

width of the resonance measured from the values where the 

macroscopic resonance and macroscopic total potential scattering 

cross sections are just equal to one another.  This is shown in 

Figure 11.9.  There exist two readily treated cases: 

 

 1. If the practical width is less than the average energy 

loss in scattering events in both moderator (M) and 

absorber (A), we have the narrow resonance (NR) 

approximation, 

 2. If the practical width is less than the average energy 

loss in a moderator scattering collision but much greater 

than the average energy loss in an absorber atom 

scattering collision, we can neglect the scattering from 

the absorber atoms and we have the narrow resonance, 

infinite mass absorber (NRIM) approximation, 
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 Fig. 11.9  Diagram Defining the Practical Width p 

 

Naturally, there exist some cases where a certain amount of error 

is made using either approximation.   A notable example is a 

graphite (A = 12) moderated system. For these cases, an 

intermediate resonance treatment (IR) can be used, but this 

involves considerably more work because the slowing down effect 

must be included. 

 In either the NR or NRIM approximations, the form of the 

absorption rate equation is 

If the resonance is narrow and the scattering cross sections are 

fairly constant, then the product Er can be extracted from the 

integral leaving an absorption rate equation of the form, 
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We now have a ratio of macroscopic cross sections that contain 

Doppler broadened terms in both the numerator and the 

denominator.  This integral can be evaluated directly. 

 

 NR Case.  We use the subscript A for absorber and the 

subscript M for moderator.  If there is no absorption in the 

moderator, then the various macroscopic cross sections are 

defined in terms of the Doppler functions as  

and 

For the Doppler functions, the integral over the resonance takes 

on the limits of -  to + .  Obviously, the integral containing 

the interference term, x),( , is a fairly complicated function. 

In many practical situations, interference can be neglected, in 

which case the absorption integral is a fairly simple expression 

of the form 

where 
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NR is the ratio of the total macroscopic potential scattering 

cross section to the peak macroscopic resonance cross section.  

Also, from the definition of x, 

The factor of 2 was absorbed in writing the limits on the 

integral from 0 to  instead of from -  to + . 

 The integral term in the above equation has been evaluated 

numerically and is available in both tabular and graphical form. 

Dresner defines this integral as the J-function 

It is given graphically in terms of a parameter j, where  

  2
j
 x 10

-5
, as shown in Figure 11.10.  A tabulation of J( , ) 

is given in ANL-5800, Reactor Physics Constants.  Using the  

J-function, the NR resonance absorption can be written simply as,  

 When the interference term is included, the absorption 

probability has the form,  

where the coefficient 

contains the ratio of the potential scattering in the absorber to 

the total non-resonance scattering.   
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 Fig. 11.10 The Function J( , ) vs. j, where  = 2
j
 x 10

-5
 

      (From Resonance Absorption in Nuclear Reactors by L. Dresner, 1960, Pergamon Press) 

 

This equation can also be put into the form 

where the modified J-function is defined as 

 

In the low-temperature limit where Doppler broadening is 

negligible,    and 

 For intermediate cases, Rothenstein has computed a series 

expansion for the modified J-function in powers of .  His 
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results are of the form, 

where the function f(
NR

, ) is given in Figure 11.11. 

 
 Fig. 11.11  Plot of the Correction Factor f( , ), Used  

     in Calculating the Modified J( ,, ) 

                      (From W. Rothenstein, Nucl. Sci. Eng., 7, 162, 1960) 

 

 NRIM Case.  When the average energy loss in a scattering 

collision with an absorber atom is small compared to the 

practical width, we can neglect this scattering contribution 

entirely and therefore the total cross section consists only of 

moderator scattering and resonance absorption:  there is no 

potential scattering or interference term to worry about.  In 

this case, again letting /EEr   1, we have  

 ...,+  
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and 

 We form the ratio of a/ T, as done previously in computing 

the absorption probability, and then divide through by NA r γ/  

to obtain the expression 

In this case, the value of 
NRIM

 is different from 
NR
, namely, 

 

 Limiting Cases.  There are some limiting cases which are 

useful to examine with regard to the J( , ) function.  For 

example, when the mixture of absorber atoms is very dilute so 

that there are very few absorber atoms compared to moderator 

atoms, we would expect very little absorption to take place.  In 

terms of the defining integral, 

the value of  becomes very large for dilute mixtures, and it is 

possible to neglect x),(  in the denominator in comparison to . 

Hence, 

Not only does the absorption rate become small, but the rate 

becomes independent of temperature. 

 At the other extreme, when the absorber becomes very 

 x).,(N  +  N    rAsMMNRIM T  (11.58b) 
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concentrated, one can neglect  in the denominator with respect 

to x),( , and the absorption probability becomes large and 

independent of temperature.  For intermediate cases,  

J/  is negative, so that the transition between extremes is 

monotonic.  

  It further can be shown that as the temperature increases, 

 decreases and the partial derivative J/  is negative, 

implying that J/ T is positive and resonance absorption 

increases with increasing temperature.  For 
238
U, the Doppler 

coefficient of reactivity is negative.  However, for 
235
U, the 

Doppler coefficient is positive because resonance absorption also 

produces fission.  The overall Doppler coefficient depends upon 

the relative contributions from each of these isotopes, and is a 

design concern in highly enriched cores. 

 Finally, at T = 0 , which implies no Doppler broadening, the 

J function has the limiting value 

This value is consistent with the result for the infinitely 

dilute case. 

 If one plots the resonance escape probability p, which is 

equal to 1.0 minus the resonance absorption probability, one 

obtains the curves shown in Figure 11.12 for hydrogen-uranium 

mixtures.  These results are consistent with the above 

predictions.  We can state that for a homogeneous system of 

moderator and resonance absorbers we have a negative Doppler 

coefficient of reactivity as a function of temperature.  This can 

be considered to be a safety feature with respect to power 

excursions in such reactors.  Doppler feedback acts independently 

of any moderator density effects. 

 Because of the factor of 1/Er in the denominator of the 

absorption rate equation, all other things being equal, the 

 .
)  +  (12

  =  ),J(  (11.62) 
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lowest energy resonances capture the most neutrons because the 

flux is largest there.  This is illustrated in Table 11.2, where 

the exact solution and the NR and NRIM approximations are 

compared for various 
238
U resonances for a ratio of NH/NU = 1.0.  

Note that the lower energy resonances indeed have the highest 

capture rates, and that the accuracy of the NR and NRIM 

approximations is consistent with a comparison of the practical 

width to the scattering interval for the absorber.  We see that 

the NR approximation should be used at high resonance energies 

and the NRIM approximation at low energies.  Note also that some 

of the error is due to the use of an asymptotic collision density 

instead of the actual collision density. 

 

 

Fig. 11.12 Resonance Escape Probability for the 6.67 eV 

Resonance in Hydrogen-Uranium Mixtures 

  (From Introduction to Nuclear Reactor Theory by J.R. Lamarsh, 1966, Addison Wesley) 
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Table 11.2 

   Absorption in Uranium-238 Resonances for NH/NU = 1. 

 ─────────────────────────────────────────────────────────────── 

 Resonance   (1- A)Er       p     Exact value NR   NRIM 

 Energy (eV)           (eV) (eV)   absorption rate  

               probability 

 ───────────────────────────────────────────────────────────────  

 418     7.0 .105  2.56  .0019     -6.9% +97% 

 278   4.7 .065  1.87  .0035     -5.1 +41. 

 212   3.6 .085  2.63  .0050    -11.6 +53. 

 192   3.21 .165  5.66  .0071    -29. +73. 

 117   1.97 .040  1.32  .0092     -1.5  +3.6 

  90   1.51 .025 10.13  .0011     +0.9  -9.6 

  81   1.36 .0271  0.76  .0096     +5.9 -15.5 

  36.9    .626  .0575  3.65  .0582    -18.6  +5. 

  21    .357   .0339  1.95   .0676   +10.4    +4.5 

    6.67   .113 .027  0.72  .1963    +20.  +1.7     

     

 ─────────────────────────────────────────────────────────────── 

              (From K.T. Spiney, BNL-433) 

 

 11.5  Homogeneous Resonance Integrals 

 

 At this point we have computed the absorption rate per unit 

source, or alternately the absorption probability, for individual 

resonances. Using either approximation for widely spaced 

resonances, the form of the equation is, 

If the resonance were absent entirely, then the flux would 

asymptotically have the value 

where the scattering cross section is constant and equal to  

 .
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 We can use the above expression to define a new "point" 

quantity called the effective resonance integral (ERI).  Let Ir 

be an effective microscopic cross section such that the product 

NAIr Asy(u) is equal to the resonance absorption probability.  

This expression is  

Rearranging, one has the definition, in units of barns, 

This quantity is useful in defining the effective absorption over 

an energy band of width u containing the resonance in terms of 

the flux that would exist in u without the resonance.  The 

corresponding Doppler-broadened effective resonance integral in 

the NR approximation has the form 

 When the system is infinitely dilute, so that there are very 

few absorber atoms present, T(E) approaches p, and the 

resonance integral approaches 

This is called the resonance integral (RI). 

 It is possible to build a well-moderated irradiation 

facility that has a 1/E flux over a wide range of energies.  

Hence, one may prepare small samples of absorber and moderator, 
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approximating infinitely dilute mixtures for example, and measure 

the absorption rate in the sample by a means such as activation 

analysis.  What one obtains, is a total resonance integral RI 

which is the sum of the absorption over all resonances, both 

resolved and unresolved, namely, 

 

Likewise, for mixtures, the total effective resonance integral 

ERI is 

By heating the samples, the total effect of Doppler broadening 

can also be measured.  The important thing to note is that there 

is an experimental check available, at least for the total 

resonance integral, for comparison with the sum of the individual 

contributors.  

 Neutron cross sections as a function of energy have been 

measured in detail using a variety of means to obtain a 

monochromatic neutron beam.  Among these devices are crystal 

spectrometers and neutron "choppers" with time-of-flight gating. 

An example of the data for 
238
U is shown in Figure 11.13.  All of 

these devices have the property that their resolution worsens as 

energy increases.  The net result is that the experimental curves 

are well resolved at low energy, say below 500 eV, and poorly 

resolved or unresolved above this energy.  Unfortunately, for a 

material such as 
238
U, approximately 20% of the total measured 

resonance integral is due to the unresolved resonances.  This 

absorption is significant and cannot be ignored; when doing 

multi-group calculations such absorption must be included in the 

higher-energy groups to properly account for capture in the 

 .I  =  I r

=1r
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unresolved resonances.  Resonance overlap must also be 

considered, if significant. 

 It should be noted that the peak cross sections shown in 

Figure 11.13 are considerably smaller than the values obtained 

from the pure line shape.  At 0 K, (0,0) = 1, while at room 

temperature (0.05,0) = 0.341.  Therefore, the experimental data 

are low by approximately a factor of 3, due to room-temperature 

Doppler broadening alone! 

 Fortunately, there is sufficient data in the resolved 

resonance region to allow one to evaluate the statistical 

properties of the resonance parameters.  It is found, for 

example, that the radiation width γ is almost constant for a 

given nuclide while the neutron width has a statistical chi-

square distribution about the mean value of r
n .  The chi-square 

distribution for one degree of freedom is called the Porter-Thomas 

distribution, and, for r
n  x / r

n , is of the form, 

 

 Fig. 11.13  Total Cross Section of 238U in the Resonance 

Region   

                       (From BNL-325) 

 .e
x

2

2

1
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The function P(x) is shown in Figure 11.14.  Furthermore, Wigner 

has suggested that the spacing of resonances has a distribution 

about the mean value D of the form 

where z  D/D(z) is shown in Figure 11.15.  Values are given 

for the average parameters in Table 11.3, based upon the resolved 

data. 

 

 Fig. 11.14  Porter-Thomas Distribution of Neutron Widths 

 

        Table 11.3   

Statistical Properties for Uranium Resonances 

                Uranium-238               Uranium-235 

γ(mV)   19.0     45.0 

f(mV)     -     53.0 

r
n (mV)          1.9           0.1 

D(eV)            21.1              1.0 

 

 ,e
2

z
  =  P(z) /4z- 2

 (11.71) 
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 Fig. 11.15  Distribution of Level Spacings 

 

 The unresolved contribution can be computed by using a Monte 

Carlo technique.  Using random numbers, a resonance scattering 

width and spacing can be selected from the probability 

distributions for each unresolved resonance up to a point where 

the addition of contributions are negligible due to the 1/Er 

effect.  A number of similar Monte Carlo experiments will 

generate a series of different possible unresolved structures.  

From this set, an average total resonance integral and its 

standard deviation can be derived. 

 Since the unresolved resonances are treated in the same 

manner as resolved resonances, Doppler broadening can be included 

as well.  For thermal reactors, the widely spaced resonance 

approximation is fairly good.  However, in fast reactors where 

considerable absorption occurs at high energy, resonance overlap 

and interference effects must be included.  These will not be 

treated here. 
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 11.6*  Heterogeneous System Resonance Absorption 

 

 Reactor systems are usually made up of repeated arrays of 

fuel pins, such as UO2 pellets loaded in zircaloy cladding tubes, 

which are mounted together in fuel assemblies.  The pins are 

usually of the order of 0.5 to l cm in diameter, with comparable 

spacing.  Since the pins are normally more than 3 meters long, 

the axial variation is usually negligible. 

 What we really want to do is solve a spatially-dependent 

slowing-down problem.  We need transport theory because the fuel 

rod is a very strong absorber near resonance energies and the 

entire cell is small.  The incident flux on a given fuel pin 

surface varies azimuthally because of the shadowing pattern from 

adjacent fuel pins.  And finally, in modern reactors, the 

adjacent pin positions are not all alike; some contain control 

rod pins or burnable poison pins.  Even the spacing between pins 

can change at the interface between fuel assemblies. 

 The actual problem is far too difficult to solve 

analytically in a generally useful form.  Therefore, a series of 

simplifying approximations have usually been made in order to 

make the problem tractable.  The usual approximations are: 

 

 1) Concentrate on a single isolated cell, assuming that 

there is no net neutron current between adjacent cells; 

 

 2) Replace the transport flux solution by probabilities 

that neutrons will escape from one region into the 

other and vice versa; 

 

 3) Use an interpolation function to express the energy 

dependence of the escape probabilities; 

 

 4) Correct the escape probabilities for the presence of 
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the adjacent external pins that are indeed close enough 

to influence the flux in the isolated cell; 

 

 5) Interconnect the average flux magnitudes in the 

isolated cell regions with a concept called 

reciprocity; and 

 

 6) Assume an asymptotic flux in both the fuel and 

moderator regions (this assumption is relaxed in some 

intermediate resonance (IR) approximations). 

 

 Heterogeneous Balance Equation.  When we speak of a 

heterogeneous treatment, we really refer to the analysis of a 

typical cell within the array such as is shown by the dashed 

square in Figure 11.16.  Hence, we analyze a single rod (or a rod 

with cladding) surrounded by a moderator region.  Let us assign 

the subscript F to the fuel region and the subscript M to the 

moderator region, as shown in Figure 11.17.  We will use the 

superscript O for oxygen and the superscript U for uranium in the 

fuel region.  Hence, let 

 

 Since the fuel region in this example contains both uranium 

and oxygen, scattering effects from both will have to be treated 

separately.  Let us write a total neutron balance equation for 

the collision rate in the fuel region, using volume-averaged 

fluxes in both regions.  We introduce quantities known as escape 

probabilities, PM(E), and PF(E), defined as being the probability 

that a neutron originating in the given region and having energy 

E will have its next collision in the other region.   
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 Fig. 11.16  Rod-Type Fuel Assembly 

 

 

 

 Fig. 11.17  Unit Cell in a Fuel Assembly 
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The balance equation is the following, 

This is the fundamental balance equation for a heterogeneous 

system, which reduces to the homogeneous balance when only one 

region is present.  Before using this equation, the calculation 

of escape probabilities will be treated. 

 Although the balance equation is exact, the escape 

probabilities are difficult to calculate.  However, for most 

heterogenous systems, the spatial distribution of neutrons, at 

least for those energies not too near a resonance peak, is 

reasonably independent of position, as shown in Figure 11.18.  

Therefore, one can make an approximation that the flux is 

spatially flat in each region and use this to derive approximate 

values for PF and PM. 

 In fact, what we will actually do is calculate the escape 

probability Pesc for a lump of arbitrary shape embedded in an 

infinite medium.  Next, we will relate Pesc to PF for simple 

regular bodies such as slabs, cylinders and spheres.  Then we 
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will correct PF for the presence of adjacent cells.  Finally, we 

will obtain PM from PF using an idea called reciprocity. 

 

 

 Fig. 11.18  Actual and Approximate Flux Distribution in a 

Cell 

 

 Calculation of First Collision Escape Probabilities by the 

Mean Chord Method.  Suppose that neutrons are produced 

isotropically and uniformly over an isolated region of volume V 

that is made of a material with a spatially uniform constant 

total cross section T.  Consider a neutron generated at 

position r

 and traveling in a direction 


 as shown in Figure 

11.19.  The probability that the neutron will escape the region 

is equal to the probability that it will not suffer a collision 

before reaching the surface of the region.  The probability of 

not having a collision before traveling a distance   and 

reaching the surface is 

 .e  =  
,r

),r(- T




 at
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Since the neutrons are produced isotropically and uniformly in 

the volume, the generation probability is 

 

 

 Fig. 11.19  Chord Length to the Surface of a Lump Along the 

     Direction 

. 

 

 The escape probability for the entire lump is obtained by 

taking the product of the above probabilities and integrating 

over all directions and over the volume of the lump.  Formally, 

One possible way to perform the integration is to divide the 

volume up into tubes, all of which are parallel to a given 

direction , as illustrated in Figure 11.20.  If dS is the 

surface area subtended in the outward direction, then the actual 

projected cross sectional area of the tube is n    dS, where n  

is the unit normal to the surface.   s is the length of the tube. 

Expressing the volume element as 

 .
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we can perform the integral over   from   = 0 to   =  s for all 

outward going neutrons n    > 0.  The result, when taken over 

all allowed directions , is 

 

 Fig. 11.20  Calculation of Pesc Using Parallel Filaments 

 

 We still have a formidable double integral to evaluate, 

where  s is a function of both position and direction.  However, 

a useful limiting case presents itself.  When T  s is reasonably 

large, i.e., for a large lump, the exponential term becomes 

negligible, and the escape probability approaches the value 

The latter result obtains because d  = -2 d , n    = μ = 

cos , and the condition n    > 0 implies an integration over 
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the range 0 >  > 1, giving 

On the other hand, the limiting case for a very small lump of 

material is a situation where essentially all neutrons escape, 

i.e., 

 Wigner has proposed a rational (reasonable) interpolation 

approximation to the general case, applicable to all bodies, 

which reduces to the correct limits for both large and small 

lumps, namely, 

For any large convex-shaped body, the average chord length   can 

be shown to be equal to the value 

which is analogous to the hydraulic diameter used in fluid 

mechanics.  Hence, the Wigner rational approximation also takes 

the form 

The product  T is dimensionless.  It is called the optical 

thickness, t, and is given in relative mean-free-paths by the 

expression 

First collision escape probabilities have been calculated exactly 
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for a variety of simple geometries.  A comparison of these values 

with the rational approximation is shown in Table 11.4, which 

shows agreement generally to within 15%.  The rational 

approximation is a convenient analytical form useful in extended 

derivations, whereas the tabular values can only be used in 

numerical integrations. 
 
 
      Table 11.4   
 

  Escape Probabilities for Various Geometries 

 ────────────────────────────────────────────────────────────── 

 t    Sphere  Cylinder   Slab  Rational 

 ────────────────────────────────────────────────────────────── 

 0.04  0.978  0.974   0.952  0.962 

 0.1  0.947  0.939   0.902  0.909 

 0.2  0.896  0.885   0.837  0.823 

 0.5  0.767  0.753   0.701  0.667 

 1  0.607  0.596   0.557  0.500 

 2  0.411  0.407   0.390  0.333 

 5  0.193  0.193   0.193  0.167 

 10  0.099  0.099   0.100  0.091 

     ────────────────────────────────────────────────────────────── 

 

 Dancoff-Ginsberg Correction.  If the fuel rods are separated 

by moderator regions that are thin in terms of mean-free-paths, 

then there is a strong probability that a neutron from one fuel 

rod will have its next collision in one of the other fuel rods of 

a periodic array, as shown in Figure 11.21.  This probability 

depends upon the chance that the neutron will arrive at the 

adjacent rod without collision, and also upon the chance that it 

will collide in that rod when it gets there.  The problem is 

similar to optical shadowing through a translucent medium. 

 The calculation of this effect for cylindrical rods involves 

fairly complicated integrals which have been evaluated for 

perfectly absorbing (black) cylinders by Dancoff in terms of 

Bickley functions.  The result is applied as a correction to the 

escape probability for a single fuel region.  This correction is 

given in terms of a tabulated factor C, called the Dancoff 
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factor.  Bell has shown that the corrected escape probability for 

a partially absorbing fuel rod is given approximately by the 

expression 

 

 

 Fig. 11.21  Periodic Array Illustrating the Dancoff Effect 

 

In the limit of strongly absorbing rods, PF approaches  

Pesc(1 - C), the actual shadowing, while for weakly absorbing 

rods, PF approaches Pesc.  One sees that the escape probability 

for a single rod is slightly reduced as a result of the Dancoff 

correction. 

 The Dancoff correction has been calculated for perfectly 

absorbing cylinders in regular lattice arrays.  The parameters of 

interest are the size of the rod, r, compared to the center-to-

center rod spacing, d, and also to the effective mean-free-path 

between fuel rods, which is proportional to the product r sM.  

The tabulated correction is given for a single adjacent cylinder, 

so that the total correction must be obtained by summing over all 

of the nearest cylinders; this summation converges rapidly.  

Correction factors are tabulated in Table 11.5.  Carlvik has 

tabulated these sums for both square and hexagonal lattices. 
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Table 11.5 
 

Single Adjacent Cylinder Dancoff Corrections (From ANL-5800) 

 

─────────────────────────────────────────────────────────────────────────  

     r sM 0    0.25  0.50  1.0  1.5  2.0 

d/r 

───────────────────────────────────────────────────────────────────────── 

2.0  0.182  0.170  0.160  0.144  0.132     0.123 

2.5  0.136  0.107  0.0849 0.0550 0.0364    0.0245 

4.0  0.081  0.040  0.0205 0.0057 0.0016    0.0005 

7.0  0.046  0.0094  0.0021 0.0001  -     

10.0  0.032  0.0028  0.0003 -   -      

─────────────────────────────────────────────────────────────────────────  

   

 

 Reciprocity Theorem.  At this point we have a value for the 

escape probability from the fuel, but we do not have a value for 

the moderator.  To obtain this relationship we need to use a 

theorem known as reciprocity, which is true in general for the 

one-speed transport equation and its diffusion theory 

approximation.  The theorem is based upon the fact that the 

Green's function for the system is symmetric in its arguments.   

 Consider the diagram given in Figure 11.22.  The diffusion 

equation in the one-speed approximation is 

 

The Green's function is obtained by replacing the source by a 

delta function at point r

i and then finding the corresponding 

flux G( r

i  r


).  We do this for two different space points, r


1 

and r

2.  The equations are 
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 Fig. 11.22  Model for Reciprocity Derivation 

 

 As we did in the perturbation theory analysis, we next 

multiply the first equation by G( r

2  r


), multiply the second 

equation by G( r

1  r


), integrate over the volume of the reactor 

and subtract the second equation from the first.  The result is 

Note that the terms containing a cancel.  Using the second form 

of Green's theorem, which is equivalent to integrating by parts, 

the volume integral can be converted to a surface integral with 

the result that 

But, according to the boundary conditions on the cell, the flux 

or its gradient must be zero everywhere on the outer surfaces.  

Hence, the entire surface integral is zero, which leads to the 

general result that the one-speed Green's function is symmetric, 
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i.e., 

 The reciprocity theorem can now be proved in a 

straightforward manner.  For a spatially uniform unit source  

S( r

’) = 1 placed in region B, the integrated production rate is 

equal to VB; the flux in region A is the volume integral of the 

Green's function over all source points r

’, namely, 

 

The escape probability PB from region B for region-wise constant 

cross sections is then equal to the number of absorptions 

occurring in region A divided by the total number of neutrons 

produced in region B, or 

Likewise, for a spatially uniform unit source S( r

’) = 1 in region 

A, the escape probability from region A is 

Now, because of the symmetry of G( r

’  r


), we can equate the 

two double integrals and obtain the reciprocity relationship, 

Since nothing was said about the size or shape of regions A and 

B, this result can be applied quite generally. 

 Specifically, for the resonance absorption problem, every 

scattering event is the equivalent of an absorption event since 
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it removes a neutron from the energy interval under 

consideration.  In this case, the relationship for the escape 

probability from the moderator region can be written in terms of 

the escape probability from the fuel region as 

 

 Application of the Reciprocity Theorem to Heterogeneous 

Systems.  

 

 We return to the fundamental neutron balance equation for a 

heterogeneous system and insert the reciprocity theorem result.  

After canceling VF, we obtain the equation 

Note that this expression now contains only PF(E), and that TF 

has come outside of the first integral. 

 In order to proceed further by analytical means, we must now 

make use of some additional approximations.  Specifically, we 

assume that just above the resonance energy the flux is 

asymptotic, and furthermore that for the purpose of evaluating 

the integral terms it is approximately equal in the two regions. 

In this case the asymptotic flux is given by the expression 

 We volume-average the potential scattering contributions to 

obtain the term in the denominator, namely 
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where we use only the background potential scattering term U
p  

for the uranium. 

 We use the asymptotic flux approximation only for the 

moderator and oxygen terms, allowing the integrals involving 

those terms to be evaluated easily.  The resulting integral 

equation for the flux is then  

 

 NR Approximation.  Assume that the flux entering the 

resonance in the remaining integral term for uranium is also 

asymptotic; integrate the remaining integral using only the 

potential scattering contribution in uranium.  Solve for F(E) 

on the left-hand side of the equation.  The result is the value 

Note that the functional form is similar to Eq. 11.44 for the 

homogeneous case.  We use this energy-dependent flux in the 

absorption probability equation to obtain the heterogeneous NR 

resonance absorption probability.  Since the unit slowing down 

source is for the total cell volume, V, this expression is 
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Note that aF = N
U
F cF.  Inserting the flux, and separating out 

the terms containing PF(E), we obtain 

 Note that this expression is in the same general form 

obtained previously for a homogeneous system, but it contains an 

effective resonance integral having two separate contributions.  

Since the escape of neutrons must occur over the surface of the 

fuel lump while the main absorption occurs in the fuel volume, it 

is natural to define these contributions accordingly.  Therefore, 

we write the equivalent expression 

 

where the volume term is 

and the surface term, which contains the probability of escape 

over the fuel surface, is 

These effective resonance integrals are similar in form to the 

integrals that we have evaluated previously. 

 If one inserts the Breit-Wigner form for the absorption 

cross section, and makes the following definition, 
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then the Doppler-broadened form of the volume term is 

where NR
pF  = 

U
p  + 

O
s .  Recognizing that PF(E) is a function of the 

optical thickness t through the mean chord length  , the surface 

term can be put into a similar form, namely, 

The function L ),,(
NR  has been computed by Adler and Nordheim 

and is also a tabulated function. 

 

 NRIM Approximation.  Similar results are obtained using the 

NRIM approximation.  The major differences are a redefinition of 

parameters to exclude the potential and resonance scattering in 

the uranium in Eq. (11.98), and the addition of a first-order 

correction of the escape probabilities. 

 

 Discussion.  The above methodology depends on the validity 

of a number of assumptions.  The foremost assumption is that the 

slowing down transient in the collision density can be ignored, 

so that an asymptotic flux exists at each single energy.  This 

justifies the use of the reciprocity theorem to connect the 

escape probabilities between regions, giving a functional form 

that can be interpreted in terms of volume absorption and surface 
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absorption.  A second assumption is that the Dancoff correction 

for a black cylinder can be used for all energies, and it can be 

combined with the Wigner rational approximation interpolation 

function to represent the energy-dependent escape probability 

from the fuel pin.  Finally, we restrict ourselves to the use of 

the Doppler-broadened single level Breit Wigner form for the 

resonance, without a cross term, and make an assumption of the 

validity of either the NR or NRIM approximations. 

 It is surprising that this methodology works as well as it 

does.  In fact, for hydrogen, deuterium and beryllium moderators, 

the assumption of asymptotic slowing down is fairly good, but for 

carbon it is not completely valid, and an intermediate resonance 

treatment is needed to avoid errors of the order of 20%.  In the 

wings of a resonance, the absorption cross section is low, and 

neutrons penetrate deep into the fuel pin; this is the source of 

most of the volume absorption.  Near the peak of the resonance, 

the absorption cross section is high and spatial self-shielding 

is strong; this is the source of most of the surface absorption, 

which justifies and limits the range over which the rational 

approximation needs to be valid.      

 To do significantly better requires more sophisticated cross 

section representations, greater spatial detail, and the 

inclusion of slowing down calculations for moderators that do not 

obey the NR conditions.  This requires computationally intensive 

methods that are not well suited to routine design calculations. 

 It should be pointed out that the standard treatments used 

in some computer codes can usually be replaced with more 

sophisticated treatments where necessary.  Some of the modern 

"Modular" computer code systems, which are in operation at a 

number of laboratories, are designed to allow ready substitution 

of nonstandard special calculations at arbitrary positions in the 

flow "path" of a reactor design study. 
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 11.7  Reactor Design Implications of Heterogeneous Lumping 

 

 The appearance of surface and volume terms is physically 

plausible in the heterogeneous case.  But the overall effect on 

the reactor is obtained as a function of the relative spatial 

effects on the thermal flux and the resonance energy fluxes.  

Specifically, for a given cell composition (moderator/fuel ratio) 

the fission rate and the resonance absorption rates have the 

following forms: 

Postulate three cases:  (1) homogeneous cell; (2) small lump of 

fuel; and (3) large lump of fuel.  We have the following results. 

 

 Case 1. For a homogeneous mixture, the flux is spatially 

uniform and all 
235
U and 

238
U atoms are equally 

effective regardless of spatial position. 

 

 Case 2. For a small lump, the thermal flux will decrease 

slightly in the lump, while the resonance flux 

will decrease strongly just inside the surface of 

the lump as shown in Figure 11.23.  Hence, the 
235
U 

atoms are approximately equally effective no 

matter where they are, while a large fraction of 

the 
238
U atoms become ineffective in absorbing 

resonance neutrons due to spatial self-shielding. 

The relative resonance-absorption-to-fission ratio 

decreases. 
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 Case 3. In a large lump the thermal flux also decreases 

significantly in the fuel as shown in Figure 

11.24, and the effectiveness of the 
235
U decreases. 

The 
238
U atoms are already strongly self-shielded 

approaching an asymptotic value, so that the 

relative change in resonance absorption is small. 

Hence, the primary effect is a decrease in the 

fission rate. 

 

 

         Fig. 11.23  Small-Lump Flux Distributions, Schematic   

Variations 

 

 Comparing the three cases, one sees that in going from the 

homogeneous case to the small lump case the relative 

fission/resonance absorption ratio increases, thus raising k .  

As the lump gets bigger, the absolute fission rate decreases, 

causing k  to drop.  One sees a maximum in the k  vs. lump size 

curve for a given fuel/moderator ratio in a given size reactor.  

Since one needs keff = 1 to obtain a critical configuration, the 

reactor will sustain a chain reaction only if the maximum of the 

k  curve exceeds unity as shown in Figure 11.25.  Natural 

uranium-water assemblies will never achieve criticality under the 

above considerations, while natural uranium-graphite systems will 

go critical when the fuel is lumped sufficiently. 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

462 

  

 

 

    Fig. 11.24  Large-Lump Flux Distributions, Schematic 

Variations 

 

 

 

 Fig. 11.25  k  vs. Fuel Lump Size, Schematic Variation for 

             Fixed Fuel/Moderator 

 

 A similarly shaped curve is obtained when one first picks 

the lump size and then varies the fuel-to-moderator ratio.  When 
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the fuel-to-moderator ratio is large, there is not enough 

moderator to effectively slow the neutrons down before they are 

captured.  When this ratio is small, there is not enough fuel to 

produce a sufficient number of fission neutrons relative to those 

captured.  The peak of the k  curve occurs for comparable amounts 

of fuel and moderator.  Reactors are designed to be on the under-

moderated side of the k  peak, so that if for some reason the 

moderator is lost or its density is reduced accidentally, the 

reactivity effect will be negative. 

 Total effective resonance integrals have been experimentally 

correlated to expressions involving the surface/mass ratio, S/M, 

of the lump.  These expressions are of the form 

or 

The latter correlation is shown in Figure 11.26 for 
238
U, and 

demonstrates the validity of the theoretical prediction of 

separate volume and surface resonance neutron absorption effects. 

 

 General Comments.  At this point it is useful to look back 

upon the heterogeneous treatment to examine its accuracy.  The 

treatment presented here dates back to the early 1960's, and has 

been used fairly successfully in thermal reactor design.  It is 

the basis of various commonly used reactor design codes such as 

GAM, in which the energy range from 10 MeV down to 0.4 eV is 

divided into 68 groups having a uniform lethargy spacing of  

u = 1/4.  With a lethargy spacing of this magnitude, several 

resonances typically fall entirely within a single energy group, 

and resonance capture must be approached from the standpoint of 
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effective resonance integrals. 

 The above treatment is not entirely adequate if one 

considers fast reactors, where the entire reaction rate occurs 

typically above 10 keV.  In a fast reactor one has scattering 

resonances in materials such as sodium, which requires a detailed 

numerical treatment with many energy intervals taken to cover a 

single resonance.  Fortunately, the problem is primarily one of 

energy self-shielding and not of spatial self-shielding.  It is 

treatable, for example, by the Bondarenko method, which has been 

automated using cross section fits in the Los Alamos-developed 

MXS code.  Codes such as MC
2
, which allow one to treat the 

slowing down problem using as many as 2000 energy groups, have 

also been developed.  Hence, one solves the integral balance 

equation directly using numerical techniques. 

 

 

     Fig. 11.26  Experimental Effective Resonance Integral      

Correlation for 
238
U 

  (From Resonance Absorption in Nuclear Reactors by L. Dresner, 1960, Pergamon Press) 
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 At the highest level of sophistication, one attempts to 

solve the complete cell space-energy problem numerically, thus 

avoiding the use of escape probabilities completely.  It has been 

attacked by such techniques as "synthesis" or "factorization," in 

which the solution at any space point is constrained to be made 

up of linear combinations of energy-dependent trial functions.  

The object is to find the "best" linear combination of solutions 

(say from several MC
2
 runs), valid over specific energy ranges, 

at each position within the cell.  Another approach involves 

doing detailed Monte Carlo spatial transport solutions in a 

lattice at several discrete energies, with the object of fitting 

the energy-dependent flux in the pin to a rational approximation 

form for use with modified J-functions in the calculation of 

resonance integrals.  This is an alternative to running coupled 

MC
2
-Monte Carlo models.  Such methods are usually too costly for 

routine design applications. 

 

 

 11.8  The GAM Multigroup Slowing Down Equations 

 

 The GAM computer code solves the space-independent slowing 

down equations using the P1 approximation to the Boltzmann 

transport equation.  The effect of spatial leakage is included in 

a gross fashion by means of an energy-dependent buckling term.  

Since thermal neutrons are not included, the effect of fission is 

obtained by separately inserting an isotropic energy-dependent 

fast neutron source, which can have the shape of a fission 

spectrum. 

 The spatially-dependent Boltzmann equation is the starting 

point in the derivation.  It is written as 
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Recall that, for elastic scattering, the energy E of the 

scattered neutron of initial energy E  is uniquely determined by 

the cosine of the angle through which the neutron scatters in the 

CM system, namely, cos .  This relationship can be written as 

We replace the cross-section term s(


E,E ), which in this 

treatment contains both an isotropic and a linearly anisotropic 

component, by an equivalent scattering cross section at energy  

E  and angle 

 times a delta function that contains the energy-

angle relationship given above; the equation is 

 The basic procedure at this point, as shown in Chapter 4, is 

to expand both the unknown flux and the known scattering cross 

section in a series of Legendre polynomials, and then 

successively weight the Boltzmann equation by each Legendre 

polynomial in turn and integrate over the angular variable.  The 

result is a set of coupled first order energy-dependent equations 

called the Pn equations, where n is the highest order term kept 

in the series expansion.  In this case we stop with n = 1, which 
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gives the P1 equations.  The first moment of angular flux is the 

total flux  and the second moment of the angular flux is the 

current J

, i.e., 

and 

Similarly, the scattering cross section has components 

S0( EE ), which is the isotropic part, and  

 s1( EE ), which is the linearly anisotropic part. 

The actual derivation is somewhat complicated and only the result 

will be given here, which is the pair of equations,  

and 

In our previous work on slowing down, we have only treated the 

first of these equations, omitting leakage. 

 Now, the spatial dependence is averaged out.  The first 

equation is integrated over space directly, while the divergence 

of the second equation is integrated over space.  The results are 

the two scalar equations, 

and 
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where the following definitions have been used: 

Note the distinction between J(E) and B
2
(E).   The former is the 

leakage actually crossing the surface of the reactor while the 

latter is the proportionally factor between the flux and the 

curvature of the flux.  J(E) is unknown, while B
2
(E) is an input 

quantity.   

 In order to solve the coupled first-order equations we must 

discretize them over lethargy by integrating from u 1-g  to ug  for 

g  = 1 to G.  Let the lethargy interval for the g th group be 

defined as 

Then, the discretization process gives us the following form for 

the first equation, 
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In a similar fashion, the second equation gives 

Now, we make some additional definitions for each group term: 
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and 

Note that we have not yet faced the problem of treating the 

allowed scattering intervals of the various scattering isotopes, 

in relation to the integration ranges given above.  This 

decidedly nontrivial problem will be considered later. 

 When the group width ug is very large with respect to the 

width of a resonance, the resonance effect can be included by 

using the effective resonance integral.  If there are a total of 

K resonances in the given group, then the effective resonance 

portion of the macroscopic absorption cross section for the group 

for a homogeneous medium would be given by the expression 

This term would be added to the group absorption from isotopes 

with slowly varying absorption cross sections. 

 In the case of a heterogeneous lattice, the number density 

of the fuel region is used along with the surface and volume 
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resonance integrals that have already been smeared over the whole 

cell volume. 

 In multi-group slowing down codes such as GAMTEC, the 

J( , ) and L(  , , ) functions are built in as tabulations over a 

range of values of  , , and ; a means is provided for 

interpolating to obtain intermediate values.  The appropriate 

approximation, NR or NRIM, is automatically made for each 

resonance and for each resonance absorber included in the code 

library.  Furthermore, the codes contain tabulations of the 

Dancoff correction factor or a provision for inserting this 

factor externally; hence the Dancoff correction is applied to 

modify the escape probability.  The mean chord length is also 

obtained internally using the surface area and size of the fuel 

lump.  Thus, all of the resonance effects with Doppler broadening 

are properly included in the detailed zero-dimensional slowing 

down calculation, from which is derived the appropriate few-group 

absorption cross sections for reactor design calculations. 

 With the above definitions, the two equations for a typical 

group are the following: 

and 

We have a similar pair of equations for each of the G fast 

groups, for a total of 2G equations, all of which are coupled.  

We supply the cross sections and the values of B
2
g  and solve for 

g and Jg for all groups. 

 The definitions of our group cross sections involve 

averaging the detailed microscopic cross sections over flux and 

current spectra.  Actually, we do not know the values for either 
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of these quantities beforehand.  Therefore, we must guess 

spectra, such as an asymptotic 1/E distribution, or use a 

detailed spectrum from another problem to perform this task; an 

iterative process may be needed in order to obtain consistency.  

To simplify our task, and since we have to guess the spectra in 

any event, we shall use the flux averaged definitions throughout; 

thus we make the approximation that 

 Furthermore, since we have down-scatter only, the sum in the 

group transfer term goes only from the fastest group (group 1) 

down to group g.  If we look specifically at the fastest group, 

we find that the only term included is within-group scattering.  

In this case the first two equations are 

and 

 At this point it is convenient to combine some of the cross 

section terms.  We define a new total group removal cross section 

which excludes the within-group scattering, namely, 

Applying this definition, the pair of equations for group 1 can 

be put into the vector-matrix form, 

The flux and current in the first group can be obtained by 

inverting the matrix giving 

 .    T1gTog  (11.123) 

 11011011   S         J sT  (11.124) 

 
11111011

2

1 33 J    J    B sT
 (11.125) 

 .  -      gsogTogTg  (11.126) 

 .
0

S
  =  

J) -  + 3(B-

1 1

1

1

1s111so1T1
2
1

T1
 (11.127) 
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and 

Note the similarity of the latter equation to the Fick's law 

equation, namely, 

Here the group diffusion coefficient is defined as 

so that Eq. (11.128) reduces to the balance  

 

 The equations for the next energy group contain a sum of 

group transfers from higher energy groups, which are all known at 

the time that the equation is to be solved.  If we denote the 

group transfer sums as  

and 

then the solutions in general are the following: 

 
B  +  )  -    +  (3

S  -    +  3(
  =  

2
11s11lso1T1T1

11)s111so1T1

1
 (11.128) 

 .
)  -    +  3(

B
  =  J

1s111so1T1

1

2
1

1  (11.129) 

 .BD  =  D-  =  J 1

2
111

2
11  (11.130) 
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)  -    +  3(

1
    D

1s11lso1T1

1  (11.131) 
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2
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 u   S gggogs
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=1g
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and 

These equations can be solved, two at a time, from the highest 

energy group down because we have down-scatter only. 

 

 Scattering Transfer Cross Sections.  The total cross-section 

terms are not difficult to treat, except when there are 

resonances.  For a group containing a resonance, the Doppler-

broadened resonance integral is used, which includes appropriate 

heterogeneous effects such as rod size, Dancoff correction, etc. 

 The scattering transfer cross sections, on the other hand, are 

reasonably complicated.  The main question is, how does the range 

of the scattering integral compare to the group structure chosen 

for each isotope in the library?  If we draw a plot of E  vs. E , 

we can superimpose the group structure and find the allowable 

integration ranges. 

 For example, consider the energy diagram given in Figure 

11.27.  For the given value of , the minimum energy that a 

neutron coming from group g  can have is E  =  E g , while the 

maximum starting energy is /E  =  E 1-g  if the neutron is to end up 

in group g. 

 Actually, there are six possible cases, as shown in Figures 

11.28 and 11.29.  Figure 11.27 corresponds to case number 2. 

 

 
u]B  +  )  -    +  ([3

S  -  )S  +  uS(  -    +  3(
  =  

g
2
ggs1ggsogTgTg

1
g
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gggg)s1ggsogTg

g
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 Fig. 11.27  Energy Diagram for Transfer of Neutrons from  

Group g  to g  

 

 Fig. 11.28  Orientation of the Group g  and Group g  Limits 

with Respect to the Line E  = .E/  

 

 

Fig. 11.29  Additional Orientations of the Group g  and    

Group g  Limits with Respect to the Line E/ = E  
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 On the E  vs. E  diagram the double integral is taken over 

the cross-hatched area below the line E  = .E/   For case number 

3, the limits of integration are obtained by inspection to be  

'gE  < E  < E/  and 
gE  < E  < 

1gE .  Hence, for this particular 

isotope and group structure, the integral would be of the form 

 

The corresponding limits for the other cases will not be derived 

here, but all integrals can be evaluated analytically or 

numerically to give the appropriate group transfer cross sections 

for each isotope present in the cross section library. 

 

 Fast Fission.  As indicated in Chapter 3, a number of 

different transuranic isotopes are fissionable if enough kinetic 

energy is supplied by the incident neutron to overcome the 

critical energy needed for fission.  These reactions are 

threshold reactions, which usually have microscopic cross 

sections that are of the order of barns for neutron energies 

greater than approximately 1 MeV.  Fast neutrons from fission 

have energies in this range, so that fast fission can be 

significant and must be considered.  In fact, in some cases fast 

fission can be as much as 10% of the total fission rate. 

 For homogeneous mixtures of materials, the effect of fast 

fission can be included in the GAM equations by simply supplying 

the appropriate fission cross sections in the high-energy groups. 

No special treatment is necessary.  On the other hand, for 

heterogeneous systems, a complicated treatment is necessary.  

Fast neutrons can traverse several lattice cells before they 

suffer a sufficient number of scattering collisions to lower 

 .
dE )E(

dEdE )E(E)E(
  =  

E

E

so

E/

E

E

E

gogs
1-g

g

g

1-g

g

'

'
 (11.136) 
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their energies below the fission threshold.  Hence, not only 

first collision escape probabilities must be considered, but also 

multiple collision escape probabilities.  The detailed treatment 

of the heterogeneous fast fission effect is beyond the scope of 

this book.  One such treatment is Bonalumi's method. 

 Heterogeneous fast fission is included in computer codes 

such as GAMTEC by computing correction factors by which all of 

the fast group fission cross sections are appropriately modified. 

 The slowing down calculation then proceeds as if the medium was 

homogeneous.  In any event, the few-group average cross sections 

produced by the code implicitly contain the effects of fast 

fission. 

 

 Typical Numerical Results.  A typical fast neutron and 

slowing down spectrum is shown in Figure 11.30.  The high-energy 

peak represents the fission spectrum source, and the dips around 

2 MeV are caused primarily by inelastic scattering in oxygen.  At 

the low-energy end of the spectrum, one also observes the 

smoothed-out absorption in the 
238
U resonances and the resulting 

drop in the slowing down density with net absorption. 

 Cross-section averages over broad groups are obtained by 

choosing energy breakpoints and averaging the cross sections over 

the flux in each range.  In Figure 11.30, the fast spectrum is 

divided into three broad groups.  When the thermal group average 

cross sections are added, the result is a set of few-group cross 

sections suitable for one region of a 4-group reactor criticality 

problem. 
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 Fig. 11.30  Typical Fast Neutron Spectrum vs. Lethargy 

 

 

 Problems 

 

11.1 Fast neutrons of energy Eo are uniformly produced in an 

infinite homogeneous scattering medium having a constant 

s.  They slow down without absorption to a lower energy E1, 

where E1 << Eo.  At E1 there is a strong resonance that 

extends down to E2. 

a) Assuming that all the neutrons in the interval  

E1 - E2 are absorbed, calculate the resonance     

escape (non-absorption) probability if  

          αE1 < E2 <  E1.  Use fundamental slowing down   

theory to obtain the answer. 

  b) What should the result be for E2 < E1?  Show that 

your answer to part (a) reduces to this result at 

E2 = E1. 
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11.2 Consider a material whose resonance absorption cross section 

can be approximated by a narrow rectangle at energy Er which 

is  eV wide and 10
6
 barns high as shown in the figure 

below.  The material does not scatter neutrons.  The 

moderator is non-absorbing with a constant scattering cross 

section of sM = 1 barn.  The ratio of moderator to absorber 

is NM/NA = 1.0.  Write an approximate expression for the 

resonance absorption probability in an asymptotic energy 

region where the narrow resonance approximation (NR) is 

valid.  State your assumptions. 

 

11.3 You are given a pure scattering medium (A > 1) with a 

constant scattering cross section s.  Consider an energy 

region far below the source energy.  Between E1 and E2 there 

is a resonance whose absorption cross section is a = 9 s. 

Above E1, the flux is asymptotic, (E) = 
E

1

s

.  Also,  

E1 < E2.  Make an assumption that in the resonance region 

the flux varies as 
E

1
=(E)

s

.  Neglect the Doppler effect. 

 

  a) Derive an expression for the approximate value of 

the slowing down density q(E2). 

  b) Evaluate this expression if A = 12, s = 0.1 cm
-1
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and E2 = 0.9E1. 

  c) Find the non-absorption probability using q(E1) 

and q(E2). 

  d) Find the non-absorption probability by directly 

evaluating the absorption. 

  e) Explain the difference seen in parts c) and d). 

 

11.4 What is the Doppler effect?  Explain what happens when a 

resonance absorber is heated.  What type of feedback is 

obtained in the following situations: 

 

  a) a thermal reactor fueled with natural uranium?; 

  b) a thermal reactor fueled with highly enriched 
235
U? 

  c) a fast reactor fueled with highly enriched 
235
U? 

 

11.5 Prove that x),(  is given by the differential equation 

 where x),( is the ordinary Doppler function. 

 

11.6 Show that the integral of the Gaussian function N(Vx) is 

unity, i.e., 

11.7* The radiation widths and neutron widths of two of the 

lowest energy resonances in 
238
U are given below.  Complete the 

table. 

 

 

 

 ,
dx

x),(d4
  +  x),(2x  =  x),(

2
 

 

 1.0.  =  dV 
2kT

MV-

kT2
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2
x
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    Er(eV)  γ(mV)     (mV)r
n    r(b) 

     6.67 

    21.0 

      26 

      26 

     1.52 

     8.5 

       ? 

       ? 

 

 Calculate the resonance absorption probabilities for these 

two resonances for a one-to-one atom mixture of uranium and 

hydrogen at the following temperatures: 

  a)  T = 0 K ; 

          b)  T = 300 K ; 

          c)  T = 600 K ; 

 

11.8 You are the head of the Reactor Physics Design Group at 

Xenon Nuclear Industries, one of the commercial suppliers of 

thermal reactors that is competing with Westinghouse, etc., 

for a share of the market.  As a result of regulatory 

decision, the maximum fuel pellet temperature must be 

lowered, and the company's Thermal-Hydraulics group 

recommends meeting this criterion by making the fuel rods 

10% smaller in diameter than the present design.  Discuss 

the impact of this decision on your design group.  

Specifically, list the jobs that must be done and estimate 

the time and amount of manpower needed to accomplish this 

task.  Make an estimate of the cost to the company of this 

seemingly minor design change. 

 

11.9 What is reciprocity?  Prove reciprocity for the one-speed 

slab geometry system that obeys the equation 

 where (x) outer surfaces = 0. 

                
    S(x),    (x)(x)        

dx

d
D(x)

dx

d
-

     urce        soabsorption          leakage   

a
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 Hint:  Consider using a Green's function for this problem. 

 

11.10  Compute the flux-weighted scattering transfer cross 

section (a number) from Group 5 to Group 10 for 

hydrogen with s = 20 barns where Group 5 lethargy is 

from 1.00 to 1.25 and Group 10 lethargy is from 2.25 to 

2.50. 

 

11.11 For cases 4 and 5 shown in Figure 11.29,   

  a) derive the limits for the scattering transfer 

integral.  Draw the corresponding energy diagrams, 

similar to the one shown in Figure 11.27, for each 

case. 

  b)   Given that the scattering transfer cross section 

has linear energy dependence, 

)
E)  -  (1

1
)(E  +  (1  =  E)E( sos  where so is a 

constant, and assuming (E') = ,
E

1
 evaluate the 

integral for case 4 in terms of ,E ,E ,E ,E 1-gg1-gg  and 

. 

Note:  For computer-based resonance and slowing down problems, 

refer to the problem set given in Chapter 12. 
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                                                  CHAPTER 12 

 

 

 

THERMALIZATION 
 

 

 It is well known that the atoms of a material at a 

temperature T have a Maxwellian-like distribution of kinetic 

energies that peaks around the value E = kT, where k is 

Boltzmann's constant and T is in degrees Kelvin.  At a typical 

room temperature of 293 K, the corresponding energy is 0.025 eV. 

The atoms in this distribution have a wide range of energies, but 

relatively few are found with energies below 0.0001 eV or above 1 

eV.  The temperature of the water in a typical operating PWR is 

about 580 K, corresponding to an energy of about 0.05 eV.  The 

temperature of the UO2 in the fuel rods may average as high as 

1800 K under full power operation. 

 Thermal neutrons are neutrons that are in thermal 

equilibrium or semi-equilibrium with the atoms of the materials 

in which they are found.  This state comes about as a result of 

elastic and inelastic collisions with those atoms.  Fission 

neutrons suffer moderating collisions, slow down and enter the 

thermal neutron distribution from energies above 1 eV.  Thermal 

neutrons are removed both by leakage and by absorption.  Thermal 

neutron absorption produces the bulk of the fission in a thermal 

reactor as well as most of the conversion of fertile atoms to 

fissionable ones.  This process is very important to the overall 

neutron balance and to the spatial power profile in a reactor.  

It must therefore be treated in a careful and realistic manner. 

 The bulk of the operational design of modern thermal 

reactors is accomplished using 2- and 3-dimensional few-group 

computer codes.  Typically, 3 or 4 groups are used, with all of 
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the thermal neutrons lumped together into a single average 

thermal neutron group.  The spatial diffusion of these neutrons 

is calculated over the entire core, which consists of reflector 

regions, fuel elements of varying enrichments and states of 

depletion, water gaps, control blades or pins, and lumped poison 

regions.  Thermal group cross section libraries must be prepared 

for each different region, necessitating a detailed calculation 

of the thermal neutron spectrum in each region for use in the 

averaging process.  Most of the spectra are obtained by treating 

the regions as infinite media.  However, in some cases, a 

spectrum is "borrowed" from an adjacent region to do the 

averaging. 

 In this chapter we treat the formulation of the neutron 

balance equation over the thermal neutron range.  The energy-

dependent cross sections that appear in the balance are not 

simply the values taken from the BNL-325 "barn book", but instead 

must be suitably averaged over the actual thermal distribution of 

atom velocities. 

 Once the cross section expressions have been obtained, the 

energy-dependent thermal neutron flux can be found for the given 

mixture of materials.  For the special case of an infinite medium 

containing a moderator that has no chemical binding effects, a 

first-order nonlinear differential equation must be solved 

numerically, or a semi-analytic series solution must be 

evaluated.  For the more general case, the neutron balance 

equation must be discretized in energy and solved numerically.  

Graphical comparisons of the spectral solutions are given. 

 For the case of a small heterogeneous cell, such as a fuel 

pin in water, a spatial averaging process is also required.  This 

can be done in one of two ways.  The first method uses the 

assumption that space and energy are separable.  The problem is 

broken into two steps, homogenization over space, by finding a 

spatial flux "disadvantage factor", followed by the solution of 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

487 

  

the homogeneous thermalization problem.  In the second method, 

the space-energy problem is solved simultaneously using numerical 

techniques.  Both methods are outlined. 

 

 

12.1  Neutron Balance Equation 

 

 The basic governing equation for the steady-state 

thermalization problem is the Boltzmann transport equation.  The 

general form of this equation is identical to that used to solve 

the slowing down problem, but we make a small distinction between 

the two.  For the thermalization case, we consider the source 

term to be the result of neutron slowing down from energies above 

a value that we shall call Em, which is defined as that energy 

above which there is negligible neutron up-scatter.  Furthermore, 

in the in-scatter integral, we must consider both up-scatter and 

down-scatter, since some neutrons gain energy upon collision with 

an atom in the assembly.  The Boltzmann equation for this 

situation is written as, 

 

In effect, above the energy Em, we consider that we have obtained 

a solution to the slowing down problem by means already 

discussed.  We seek the solution for energies below Em.  The 

energy diagram is given in Figure 12.1. 
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 Fig. 12.1  Energy Diagram for Neutron Thermalization 

 

 The thermalization problem is among the most difficult found 

in reactor physics, and its complete treatment generally involves 

quantum solid state physics.  Among the reasons for the 

difficulty are the following: 

 

 1. The scattering nuclei are all in thermal motion, so 

that their velocity distribution is a complicated 

function of temperature; 

 2. Chemical binding effects cannot be ignored, since the 

kinetic energy of the neutron is less than the binding 

energy of the scattering molecules; 

 3. Any collision of a neutron with a nucleus that changes 

the vibrational or rotational state of the molecule is 

an inelastic collision; 

 4. If the nuclei are bound in a crystal lattice, such as 

graphite, the scattering event involves the entire 

lattice and energy quanta called phonons are absorbed 
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or emitted in the process; 

 5. Coherent (Bragg) scattering and incoherent scattering 

are possible; 

 6. Heterogeneous lattices, such as fuel rods arranged in 

periodic arrays, generally have dimensions that are too 

small to be adequately treated in the Diffusion Theory 

approximation. 

 

 The general case is well beyond the scope of this text, and 

will not be treated here.  However, there is one quite useful 

case that gives a considerable amount of insight into the problem 

and which can be treated without great difficulty.  This is the 

case of a monatomic moderator gas. 

 

 

 12.2*  Monatomic Gas Moderator Cross Sections 

 

 A monatomic or "free" gas moderator can be treated easily 

because there are no inelastic scattering collisions to be 

considered.  Chemical binding and crystal lattice effects are 

absent, so that one needs only to consider the thermal 

distribution of the atoms in computing the neutron reaction 

rates.  The solution was first derived in 1944 by Wigner and 

Wilkins, who treated the case where spatial and directional 

effects were unimportant by assuming an infinite medium at steady 

state.  They were not only able to simplify the form of the 

equation but were also able to solve the resulting differential 

equation semi-analytically.  The form of the Boltzmann equation 

treated is the angle-independent form: 

         

                   

E  S  dE )E(E)E(    =    

    source          inscatter                    

(E)(E)  + 

outscatter        

(E)(E)

absorption

s0sa ).('     (12.2) 
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The solution procedure is to first find the analytic forms of the 

energy-dependent free gas scattering and absorption cross 

sections, and then to use these results to actually solve the 

integral equation to determine the flux (E).  We consider the 

following points in our derivation: 

 

 1. The absorption cross section varies as 1/v; 

 2. The neutron scattering cross section is constant and is 

isotropic in the CM system.  We will designate this 

cross section as sO; 

 3. For thermal equilibrium, the moderator gas atoms are 

assumed to have a Maxwellian velocity distribution in 

polar three-dimensional velocity space of the form 

  Here  is the polar angle,   cos  = ( v   V )/vV, 

and  is the rotational angle, both referred to the 

direction of the neutron v  which is taken along the 

polar axis of the spherical coordinate system; 

 4. The reaction rate is governed by the relative speed 

between the neutron and the moderator atom, which is 

obtained by taking the vector difference between the 

velocity of the neutron and the velocity of the atom, 

i.e., 

  as shown in Figure 12.2.  This is similar to the 

Doppler-broadening derivation given in Chapter 10, but 

here we do not neglect the quantity V
2
.  Furthermore, 

the resulting integrals are two dimensional instead of 

one dimensional. 

 dV. d d V e
kT2

M
N = Vd )V 2/2kTMV-

3/2

0

2

  N(  (12.3) 

 , 2vV - V + v = |V - v 22         |  =  vr
 (12.4) 
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 Fig. 12.2  Vector Diagram Relating the Relative Velocity to 

           the Velocity of the Neutron and the Atom 

 

 Absorption Cross Section a(E).  The effective absorption 

cross section is the easiest term to handle, because most 

materials have an absorption cross section that varies inversely 

proportional to the velocity between the atom and the neutron.  

You will recall that 1/v behavior is the low energy limiting case 

of the Breit-Wigner resonance equation.  Hence, one can define 

the effective cross section for an atom at rest that is struck by 

a neutron of velocity v by the equation 

where a0 is the value from the BNL-325 barn book at the velocity 

v0.  Since the vr terms cancel, and a0v0 is a constant, we have 

left 
0
N(V )dV  = N0.  Hence, the effective absorption cross 

section is still 1/v, namely, 

 

, Vd )VN(
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 Total Scattering Cross Section s(E).  In the same manner 

that we followed in computing the Doppler broadening of 

resonances, we define an effective average scattering cross 

section for a scattering nucleus at rest which gives the same 

scattering rate as is observed in the actual case, namely, 

Since s0 is a constant, and we know vr and N(V ), the integral 

can be evaluated.  Assuming rotational symmetry, the result is of 

the form 

The easiest way to do the double integral is to first convert 

from the variable  to the variable vr and do this integral 

first.  The integral over V must then be broken into two ranges 

because of the form of the lower limit on the vr integral, one 

from 0 to v and the other from v to .  The resulting solution 

contains probability-type functions.  In terms of energy, the 

result is 

where 
2
  AE/kT and A is the mass number of the scattering 

nucleus.  We have the following definitions for the error 

function 
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and its integral, 

Although the expression given by Eq. (12.9) looks complicated, 

its functional dependence is not greatly different than the 

measured curve for hydrogen shown in Figure 12.3.  A better 

agreement can be obtained by using the Brown-St. John assumption 

that  

 

    ),v(- B  +  A  =  )(v rrs

2exp  

where A, B and  are chosen to fit the data.  The exponential 

form is easily handled in the derivation. 

 

 

 Fig 12.3  Total Cross Section for Hydrogen at Low Energy 

 

  

 . e
1

  +  erf(x) x  =  dx erf(x) x- 2
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Energy Transfer Cross Section E)    E(s .  As we did in the case 

of the total scattering cross section, we must also define an 

effective energy transfer cross section that gives the same 

scattering rate for stationary atoms as one observes when both 

the atom and the neutron are in motion.  In this case, we must 

not only consider the relative motion between the atom and the 

neutron before the collision, but also consider the relative 

motion after the collision.  The scattering process is isotropic 

in the CM system, with a constant total cross section σs0, but we 

must convert back to the LAB system to obtain the initial and 

final neutron velocities.  Considering v)    vP(  as the 

probability of having a neutron scatter from velocity v  to v, 

the effective cross section is defined by the relationship, 

In order to evaluate this integral, we must find an expression 

for P( v   v).  We proceed by first defining the collision 

mechanics in both the LAB and CM systems, and then make use of 

the fact that the scattering is isotropic in the CM system. 

 When both the atom and the neutron are in motion, the center 

of mass moves with the vector velocity 

which is not collinear with the motion of either particle but is 

coplanar.  The vector diagrams, in both the LAB and CM systems, 

are given in Figure 12.4.  In the laboratory, the particles 

approach each other with a relative velocity equal to the vector 

difference between their actual velocities, 
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In the CM system, the two particles approach each other along the 

direction of the relative velocity with zero net momentum.  After 

scattering through an angle  relative to the direction of 

motion of the center of mass, both particles recede from one 

another with their original speeds.  By conservation of momentum, 

the neutron has the speed 1)  +  /(AAv  =  v  =  v rcc

'
, while the atom has 

the speed V
’
c = V c  = rv /(A + 1).  One constructs the laboratory 

velocity v  of the scattered neutron by adding the velocity of 

the center of mass V CM to the vector velocity v c of the 

scattered neutron in the CM system, as shown in Figure 12.5. 

 

 Fig. 12.4 Scattering Mechanics in the Laboratory and Center 

of Mass Systems 

 

 Fig. 12.5 Diagram to Calculate the Velocity of the Scattered 

Neutron in the Laboratory 
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 The only difference between this vector diagram and that 

used in the slowing down derivation is the fact that v  and V CM 

are not collinear because the atom is not at rest.  Using 

trigonometric identities, one can write an expression for the 

speed of the scattered neutron in terms of the speed of the 

center of mass and the relative speed between the incident 

neutron and atom.  This expression is 

 Obviously, v is a minimum for  = 180 , and is a maximum 

for  = 0 .  These limits are 

and 

Forming the difference of the squares of these velocities, we 

obtain 

which will be used shortly. 

 Now we turn to the scattering probabilities.  For isotropic 

scattering in the CM system, the probability of scattering into 

angle d  about  is 

This happens to be the same as the probability for scattering 

from a speed v  into a speed interval dv about v.  Hence, 

 . 
1  +  A

Av V2
  +  

1  +  A

Av
  +  V  =  v rCMr

2

2
CM cos  (12.12) 

 
1  +  A

vA
  +  V  =  v

r
CMmax  

 

 .
1  +  A

vA
  -  V  =  v || r

CMmin  (12.13) 

  ,
1  +  A

VvA
  =  

4

v  -  v CMr
22
minmax

 (12.14) 

 . d 
2
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We can find d /dv by squaring the expression for v as a function 

of  given in Eq. (12.12), and differentiating.  The result is 

By combining the terms from Eqs. (12.14), (12.16), and (12.17), 

the energy transfer probability can be written as 

 The important point to notice is that the allowed scattering 

range is limited on both the high- and the low-energy ends.  

Furthermore, VCM and vr  are known in terms of v  and V so that the 

integral for the effective cross section can be evaluated.  

Converting to energy using the equation 

 

where 

 

we can now (non-trivally) integrate Eq.(12.10) analytically 

assuming a Maxwellian distribution for the atom speeds.  We 

obtain the effective energy transfer cross section 

 .d  
2

1
-  =  d )P( -  =  dv v)    vP( sin  (12.16) 

 .d 
1   +   A

VAv
 -   =   dv v CMr sin  (12.17) 
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where  and  are defined as 

The upper signs are used if E  <  E  while the lower signs are used 

if E.  >  E  Note that the expressions are not symmetric about 

.E  =  E  

 For the special case of monatomic hydrogen gas, A = 1 and 

 = 0, the formula simplifies to  

 

By definition, the total scattering cross section is the integral 

of the differential cross section, 

When Eq. (12.21) is integrated over all values of E, it gives the 

total scattering cross section derived previously, namely, the 

expression given in Eq. (12.9). 

 The plots of the energy transfer cross section are quite 

interesting as shown in Figures 12.6 and 12.7.  One sees that for 
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high-energy neutrons, down-scattering is the only process 

possible, while for low-energy neutrons up-scattering begins to 

be very important.  The curves for A > 1 are more discontinuous 

looking than the curve for hydrogen. 

 

 

 Fig. 12.6 Energy Transfer Function for Hydrogen Monatomic   

               Free Gas  

           (From Neutron Physics, by K.H. Beckurts and K. Wirtz, 1964, Springer Verlag)  

 

 

 

 Fig. 12.7  Energy Transfer Function for Oxygen Monatomic Gas 

               (From Neutron Physics, by K.H. Beckurts and K. Wirtz, 1964, Springer Verlag) 
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 12.3  Solution to the Monatomic Gas Thermalization Problem 

 

 Since the effective cross sections are all known and 

mathematically related analytic functions of energy, and the 

scattering integral is taken over the energy range of 0 to , 

there exists a possibility of obtaining an analytic solution for 

the energy-dependent flux (E). As a matter of fact, by making a 

series of variable changes on both the independent and dependent 

variables, the integral equation can be reduced to a nonlinear 

first-order differential equation, known as the Ricatti equation, 

which has been studied extensively.   

 The Ricatti equation is of the form 

 

 

where the coefficients A, B and C are functions of the cross 

sections and the source, and the initial condition is J(0) = 0.  

Once J(E) has been evaluated, the flux is then constructed by 

solving a definite integral of the form 

 

 

where D(E) contains error functions and exponentials, and f is a 

function of J containing similar terms. 

 By postulating a series-type solution, the differential 

equation can be integrated analytically and then evaluated 

numerically.  This is, in fact, the procedure developed by Wigner 

and Wilkins, which is used in the GAMTEC computer code and the 

parent TEMPEST code. The results are often labeled as the "free 

 (E),C(E)J  +  B(E)J(E)  +  A(E)  =  
dE

dJ 2
 (12.23) 

 ,
E

dE
)}Ef{J( D(E)  =  (E)

E
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gas" solution.  In other more recent codes, the equations are 

integrated numerically. 

 The energy transfer cross section for A > 1, e.g., the one 

shown in Figure 12.7, exhibits a considerably more discontinuous 

behavior than that exhibited for free hydrogen gas.  Eq. (12.20) 

can be approximated to first order in 1/A to obtain a simplified 

scattering kernel known as the heavy gas model, 

where  and  are the first and second derivatives of the Dirac 

-function, i.e., they are singularity functions.  The 

corresponding total scattering cross section is 

 .
2AE

kT
  +  1   =  (E) soheavy s  (12.26) 

 When the heavy gas cross sections are substituted into the 

integral balance equation, it can be shown that the balance 

reduces to a second-order differential equation with non-constant 

coefficients, which is known as the heavy gas equation, 

where  is the average logarithmic energy decrement.  The 

boundary conditions are (0) = 0 and ( ) = asymptotic 1/E.  The 

heavy gas equation is also a solution option in the GAMTEC code 

for cases where hydrogen is not present in the model, i.e., for 

beryllium or graphite-moderated systems. 

 In the limit of very small absorption, at thermal 

equilibrium, and with no sources present, the neutron flux 

distribution approaches a Maxwellian shape that has the analytic 
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form 

Here n is the total neutron density integrated over all energy.  

The maximum value of the flux occurs at an energy of 

which can be verified by taking the derivative of Eq. (12.28) and 

setting the result equal to zero. 

 In the limit of no absorption, the following neutron balance 

must be valid, regardless of the form of the scattering kernel, 

This implies what is known as the principle of detailed balance, 

which states that 

i.e., neutrons scattered from E  to  E  must be exactly balanced by 

neutrons scattered from E  to  E  for all values of E  and  E  at the 

equilibrium temperature T.  This constraint applies to the 

scattering kernels discussed thus far, and it must also apply to 

any approximate or synthetic kernels that are developed for real 

materials. 

 One requirement for any such kernel is that it must match 

the measured total scattering cross section as a function of 

energy.  As seen in Figure 12.8 for heavy water ice, some so-

called "cold neutron" moderators exhibit a cross section behavior 

at different temperatures that varies considerably from the 

simple functional dependence shown in Figure 12.3 for hydrogen.  

Of course, detailed balance must also apply.  Fortunately, the 

actual details are not extremely important for reactor design 

 .e E
m

2

)kT(

n2
  =  (E) E/kT-

1/2

3/2M
 (12.28) 
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applications, since scattering does not remove neutrons.  Thermal 

flux distributions are usually Maxwellian-like, regardless of the 

scattering materials present in the system. 

 When absorption is present, the lower-energy neutrons are 

preferentially absorbed because the absorption cross section 

varies as 1/v.  The net effect is to harden the spectrum and 

shift the neutron distribution to a slightly higher energy.  One 

sometimes defines a neutron temperature Tn to correspond to the 

energy at the maximum value of the flux when absorption is 

present, that is to say, we let 

 

In older work, an approximate method was used to predict the 

effective neutron temperature of the system depending on the 

amount of absorption present, and the spectrum was then assumed 

to be a Maxwellian at this temperature. 

 

 

 Fig. 12.8 Total Scattering Cross Section vs. Energy for 

Heavy Water Ice 

 

 .|E    kTn
max

 (12.32) 
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 12.4  General Case Solution 

 

 For molecules or crystals, the energy-dependent thermal 

neutron scattering properties must be described quantum-

mechanically.  Scattering kernels are not easy to derive for real 

materials.  Theoretically based scattering kernels are usually 

produced using what is known as the scattering law, S( , ), 

where  and  are related to the momentum and energy change in 

a collision, and where the necessary phonon frequency 

distribution parameters are fit to theoretical or experimental 

data.  The scattering kernel is generated using codes such as 

GASKET and FLANGE.   

 There exist water kernels for H2O and D2O that treat the 

molecule assuming certain allowed and hindered rotational and 

vibrational states.  There is also a polyethylene kernel, and 

kernels for crystalline graphite and beryllium that include such 

effects as Bragg scattering.  With any of these kernels, an 

analytic solution is no longer possible and one must use the 

finite-range in-scattering integral plus a slowing-down source, 

and solve the neutron balance equation after discretization into 

thermal energy groups by direct numerical inversion.  The process 

is illustrated below. 

 We start with the neutron balance equation 

 

and integrate the equation over an energy group g to obtain the 

expression 

                       S(E),+  dE )E(E)    E(   =  (E)(E)  +  (E)(E) s
E

0sa
m '  (12.33) 
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Now, define the following group averages: 

and 

The group  values must be supplied as a cross section library. 

Note that we need a separate library at each physical temperature 

because the cross sections change with temperature and the 

approximate spectrum (E) used in the averaging process also 

changes with temperature.  When these group averages are used, 

the resulting equation for thermal group g is 
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 Now, by defining appropriate vectors and matrices, the 

problem can be put into the form 

where 

and 

Note that H  is a full matrix for the thermalization problem. 

 A unique solution can be obtained by inverting the H  

matrix, namely, 

The source can be chosen, for example, to be a 1/E asymptotic 

slowing-down source in the highest-energy groups.  For a typical 

30-group formulation, direct inversion of the matrix by Gaussian 
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elimination is quite straightforward. 

 Since the molecular or crystal binding effects tend to come 

into play at low energy, one would expect to see the major 

deviations between different formulations in this energy region. 

A typical neutron spectrum for water is shown in Figure 12.9, 

where the difference between the results obtained using the free 

gas kernel and the water kernel is illustrated.  Note that there 

is a significant difference between either thermalization 

calculation and a pure Maxwellian distribution at the same 

physical temperature.  In particular, the neutron temperature Tn 

is higher than T.  A comparison of the spectra calculated for 

cases of strong absorption (hardening) and weak absorption is 

shown in Figure 12.10.  Selective absorption of low energy 

neutrons shifts the neutron temperature upwards and significantly 

alters the spectral shape.  The dip at 0.14 eV is caused by an 

absorption resonance in cadmium. 

 

 

 

 Fig. 12.9 Comparison of Free Gas and Water Kernel 

Thermalization Calculations 
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 Fig. 12.10  Illustration of Spectral Hardening 

   (From J.R. Beyster, J.L. Wood, M.W. Lopez and R.B. Walton, Nucl. Sci. Eng. 9, 168 ,1961) 

 

 Once the detailed thermal spectrum is known, the thermal 

group cross-section averages for a few-group code such as 

EXTERMINATOR can be determined.  These averages are defined as 

follows, where G denotes the single thermal group in the few-

group notation; (E) represents the solution vector from Eq. 

(12.37), and the macroscopic cross sections are taken from the 

code library.  We obtain:  
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and 

Since there is no up-scatter from the thermal group, an average 

scattering cross section is not needed.  Note also that these 

cross sections are only valid at the physical temperature at 

which they were calculated. 

 

 

 12.5  Spatial Effects in the Thermalization Problem 

 

 Now that we have examined the solution to the space-

independent thermalization problem, we shall consider in a 

qualitative manner several ways of taking the spatial flux 

distribution into account.  Specifically, we shall consider a 

lattice cell and examine the general requirements for a 

satisfactory solution.  Two factors are immediately apparent:  

(1) the cell dimensions are usually sufficiently small so that 

diffusion theory is inadequate and a transport approximation must 

be used; and (2) the spectrum in the fuel region will be harder 

than that in the moderator region because the absorption is 

greater there and the physical temperature may also be higher. 

 Of course, the actual spectral distribution varies spatially 

across the cell, but to a good approximation the spectrum at an 
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interior point is a linear combination of the spectra given in 

Figure 12.11.  The general spatial shape of the flux is shown in 

Figure 12.12.  The flux is relatively flat in the moderator 

region but begins to dip near the fuel surface indicating a net 

current flow into the fuel.  The spatial flux then drops 

considerably as the fuel centerline is approached because of the 

relatively high absorption cross section of the fuel. 

 

 

 Fig. 12.11 Thermal Spectra at Selected Points in a   

Heterogeneous Cell 

 

 

 Assumption of Separability.  The approach used in the GAMTEC 

code is to assume that space and energy are separable, i.e., let 

 

With this assumption, one first solves a spatial one-speed 

 )f(E).,r(    E),,r(


 (12.38) 
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transport theory cell problem and then uses the results to 

homogenize the various materials in the cell in order to next do 

an infinite-medium spectrum problem.  The assumption is that the 

spectrum thus obtained is a reasonable average for the whole 

cell. 

 

 Fig. 12.12  Spatial Thermal Flux in a Cell 

 

 Recall that the P1 approximation to the one-speed transport 

equation gives a second-order differential equation in the 

spatial variable, r, which for a long cylindrical cell 

corresponds to the one-dimensional radius r.  For the P3 

approximation, which treats two additional angular flux moments, 

the result is a fourth-order ordinary differential equation in r. 

If one assumes that the fission neutrons slow down entirely in 

the moderator region, and in fact form a spatially uniform source 

over this region, one can proceed to solve for the spatial flux 

distribution in the entire cell.  We have a fourth-order 

differential equation in each region, with a uniform source in 

the moderator and no source in the fuel.  We have four boundary 
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conditions at the fuel-moderator interface, two symmetry 

conditions at the cell centerline and two symmetry boundary 

conditions at the outer boundary of the cell as shown in Figure 

12.11.  Hence a unique solution can be obtained. 

 

 

 Fig. 12.13  P3 Cell Problem 

 

 One must use a set of approximate spectrum-averaged one 

speed cross sections, which correspond to an assumed thermal 

neutron spectrum, in order to solve the spatial flux distribution 

problem.  The solution is in fact a linear combination of the 

modified Bessel functions In and Kn for n = 0 to 3, whose 

arguments depend upon the absorption and scattering cross 

sections of the two regions. 

 Once the spatial flux solution is obtained, it is then used 

to average the region number densities into an equivalent 

homogeneous cell according to the prescription 

This procedure is used for each isotope in each region in the 

cell.  The number densities thus obtained are used in the Wigner-

 .VN  =  VN regionregionregioncellcellcell  (12.39) 
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Wilkins infinite-medium calculation or in a multi-group solution, 

and the resulting one-thermal group averaged cross sections from 

the spectrum calculation are used to represent the entire 

homogenized cell. 

 

 Integral Transport Method.  A second approach, which is 

considerably more accurate, is the approach used in the THERMOS 

code.  In this treatment the transport equation is first 

converted using an integrating factor into a special form known 

as the integral transport equation, which resembles a Green's 

function formulation.  In effect, one must evaluate a kernel that 

describes the flux at any point r

 and energy E due to a unit 

source at point r

'.  Once the kernel is known, the spatial flux 

in each energy group is found numerically by an iterative scheme. 

The result is a complete thermal neutron spectrum at each mesh 

point in the cell. 

 The kernel is the most difficult part of the problem.  

Fortunately, this term can be reasonably well approximated using 

escape probabilities that are evaluated for various regions in 

the cell using a technique such as Monte Carlo simulation. 

 The form of the equation that is solved in THERMOS for the 

case of isotropic scattering is 

 

The Green's function-type first-flight kernel is defined as 

where  is the optical path length (dimensionless) in mean free 
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paths between r

 and r


, which is dependent upon the macroscopic 

scattering and absorption cross sections.  The factor |r  -  r|4
2
 

in the denominator is the isotropic geometrical attenuation at r

 

from a point source at r

. 

 Since the flux appears on both sides of the equation, the 

solution procedure is to discretize over both space and energy to 

form the source problem 

where  is a vector containing the flux at each space point in 

each energy group and H  and S  contain the Green's function 

kernel which has been discretized into group-wise region transfer 

coefficients, T g,i j.  The order of the matrix is the product of 

the number of energy groups times the number of space points.  

Therefore, the solution must be obtained by iteration rather than 

by direct matrix inversion.  The THERMOS code uses various 

acceleration techniques to speed convergence of the solution. 

 Cross sections for one effective thermal group are properly 

space-and spectrum averaged after the THERMOS calculation is 

completed.  These results are again used to represent the 

complete cell as a single homogenized entity in a two- or three-

dimensional few-group criticality calculation.  Comparisons 

between GAMTEC and THERMOS indicate that the solutions agree 

remarkably well as long as the fuel pin diameter is not 

excessively large. 

 

 Synthesis Method.  Finally, we should mention the synthesis 

approach that is sometimes known as the "overlapping thermal 

group calculation."  In the synthesis approach, one calculates 

two or more trial spectra using infinite media calculations (for 

example, those shown in Figure 12.11) and then attempts to 

calculate the spatially-dependent spectrum in a cell or other 

heterogeneous medium as a linear combination of the trial 

 ,S + H     =   (12.42) 
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functions.  The primary advantage is that the result is a full 

spectrum at each spatial point, but the calculation is few group 

(i.e., one calculates the combining coefficients rather than the 

group fluxes) instead of multi-group, which makes the computation 

considerably less expensive to run.  The disadvantage, of course, 

is that the result is an approximation rather than an exact 

calculation, and its accuracy depends upon having a good set of 

trial functions for the problem being solved. 

 

 

 Problems 

 

12.1 The principle of detailed balance states that, for thermal 

equilibrium, the number of neutrons that scatter from energy 

E  to E  is exactly balanced by the number that scatter from 

E   to   E .  Hence, 

 Show that the Wigner-Wilkins expression for the scattering 

transfer cross section for hydrogen, given by Eq. (12.21), 

satisfies the condition of detailed balance, when (E) is a 

Maxwellian. 

 

12.2 Using the expression for E)    E(s  given by Eq. (12.21) show 

that the total scattering cross section, 

 is equal to the expression given by Eq. (12.9). 

 

12.3 The Maxwellian flux distribution is given by Eq. (12.28). 

  a) Since (E) = n(E)v(E), find the corresponding 

neutron density distribution function. 

 (E).)E    (E  =  )E(E)    E( ss   

  ,dE E)    E(   =  )E( s0s  
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  b) Show that the average energy of the neutron 

density distribution function is E  = 3/2 kT, 

while the most probable energy is | E
nmax
 = 1/2 kT.  

Note that these values are different from the 

corresponding values for the flux distribution. 

 

12.4* Derive Eq. (12.9) for (E)s  starting from Eqs. (12.4) and  

(12.8). 

 

12.5* The fuel elements for the Pebble Bed High Temperature 

Reactor (HTR) are spherical balls, about the size of tennis 

balls, that contain an inner core of pyrolytic-coated fuel 

particles of 
233
U, 

235
U or 

232
Th in a graphite matrix.  Assume 

that, as a first approximation, the fuel region is a 

homogeneous 5 cm diameter sphere surrounded by a 1 cm thick 

graphite shell.  Assume that the slowing down source is 

stepwise constant in the two regions, and that one speed 

diffusion theory is valid.  Refer to Figure 12.12, and 

calculate the spatial flux, the cell average flux and the 

region average fluxes in the ball in terms of the source,  

     Sm = 2Sf = So neutrons/cm
3
-s and the region properties which 

are Df = 1.5 cm, Dm = 1.3 cm, af = 10 cm,
-1
 and  

     am = 0.0012 cm
-1
. 

 

 

 Note:  The following problems depend upon the availability 

of suitable slowing down and thermalization computer codes. 

These problems are primarily intended for a code such as 

GAMTEC which solves both the P1 slowing down problem and the 

Wigner-Wilkins thermalization problem for heterogeneous 

cells.  Comparisons can be made for the thermalization 

calculation using THERMOS.  The following fixed parameters 

will be used for the cell calculations:    
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  1. The enrichment will be 3% 
235
U by weight. 

  2. The water/UO2 ratio will be equal to 2 by volume. 

  3. We will use three broad groups with breakpoints at 

0.6 eV and 10 KeV. 

 

12.6 Temperature survey, H2O-UO2 Cell 

 For a fuel rod diameter of 0.8 cm and B
2
 = 0 for all energy 

groups, do cell calculations for the following cases: 

  a) the entire cell is at 300  K; 

  b) the water is at 550  K and the fuel temperature 

varies from 600  K to 2000  K.  Use compressed 

water tables at 2000 psia to obtain the 

appropriate water density.  Use -UO2 = 10 gm/cm
3
. 

Compute the average moderator temperature 

coefficient and the average Doppler temperature 

coefficient from the k  edits. 

 

12.7 Buckling survey, H2O-UO2 Cell. 

 For a fuel rod diameter of 0.8 cm and T = 300  K in both 

regions, do cell calculations for the following cases: 

  a) The value of B
2
 is the same in all groups and 

takes values from 0 to 0.1 cm
-2
; 

  b) The value of B
2
 varies from 0.1 cm

-2
 in the fastest 



NUCLEAR REACTOR THEORY AND DESIGN 

 

 

 

518 

  

group down to 0 in the thermal group. 

   Use -UO2 = 10 gm/cm
3
 and -H2O = 1 gm/cm

3
.  

Comment on the sensitivity of the calculation to 

B
2
. 

 

12.8 Lattice size survey, H2O-UO2 Cell. 

 For a temperature of 300  K in both regions and B
2
 = 0, do 

cell calculations for fuel rod diameters varying from 0 

(homogeneous mixture) to 2 cm.  Use -UO2 = 10 gm/cm
3
 and 

-H2O = 1 gm/cm
3
.  Comment on the trends of k , p, etc., as 

the fuel rod size varies. 

 

12.9 Spectral Shift Reactor, H2O/D2O-UO2. 

 For a temperature of 300  K in both regions, a fuel rod 

diameter of 0.8 cm, and B
2
 = 0, do cell calculations for 

D2O-H2O mixtures varying from almost pure heavy water (0.5% 

H2O) to dilute heavy water (50% H2O).  Use -UO2 = 10 

gm/cm
3
, and -water equals an appropriate average between 

-D2O = 1.1 gm/cm
3
 and -H2O = 1.0 gm/cm

3
.  Comment on the 

trends of k , p, etc., as the heavy water is diluted with 

light water. 

 

12.10 Moderator Survey 

 Do a homogeneous cell calculation for the following cases: 

  a) H2O at 300  K and 600  K - Use the compressed water 

tables at 2000 psia to find the water density.  At 

600  K also find the Maxwellian spectrum averages; 

  b) D2O at 300  K and 600  K - Compute the Wigner-

Wilkins spectrum only.  Scale the H2O density by a 

factor of 1.1 to simulate D2O; 

  c) Graphite at 300  K and 600  K - Compute the 

Wigner-Wilkins spectrum only. 

 Put in a trace (say 10
-10
) of 

235
U to obtain spectrum-averaged 
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edits for these materials.  Compare the resulting cross 

sections. 

 

12.11 Repeat the thermalization part of Problem 12.8 using an 

integral transport code such as THERMOS.  Comment upon the 

separability of space and energy based upon the calculated 

results.  Compare the spatial flux distribution to that 

computed by the P3 method in GAMTEC. 
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 APPENDIX A 
 
 
 
THE SINGULARITY FUNCTIONS 
 
 

 The Dirac delta function is a member of a class of 

singularity functions that is widely used, for example, in the 

time-domain analysis of dynamic systems.  The common names of 

some of the more useful singularity functions are the unit step, 

the unit ramp and the unit impulse.  The unit step function is 

also called the Heaviside function, while the Dirac delta 

function or, more properly, the Dirac delta distribution, is 

identified with the unit impulse.  We shall examine some of the 

properties of these functions and their interrelationships here. 

 Perhaps the most familiar singularity function is the unit 

step function, which is denoted by U-1 and is shown in Figure 

A.1a.  This function has the properties 

where the function is commonly left undefined at t = 0, although 

it can be assigned the value 1/2.  It is called a unit function 

because its value is either zero or unity depending upon whether 

its argument is negative or positive. 

 If one displaces the unit step function a units to the right 

by making the variable change   = t - a, then the discontinuity 

occurs when the argument   = 0, and the displaced unit step 

function has the properties 
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This function is shown in Figure A.1b. 

 If the unit step function is integrated successively, then 

other singularity functions are obtained.  Using a consistent 

notation, we can define the unit ramp function U-2 as the 

integral of the unit step function U-1, i.e., 

We see that the unit ramp function is simply a straight line with 

a slope of unity, which begins at t = 0.   In a similar manner, 

the higher-order function U-n can be obtained recursively. 

 

 Fig. A.1  Unit Step Functions 

 

 Since successive integration of the unit step function leads 

to new singularity functions, it is logical to inquire into the 

result of successive differentiation of the unit step function.  

However, the derivative of U-1 is zero for t  0, and it does not 

exist for t = 0.  Therefore, useful results can only be obtained 

by the employment of a limiting process.  Consider the piecewise-

linear function f-1(t), shown in Figure A.2a, which approximates 

U-1(t) as the value of   approaches zero.  As shown in Figure 

A.2b, the function f-1 does indeed possess a well-defined 

derivative, f0 = df-1/dt, which is given by the expression 
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 Fig A.2. An Approximation to the Unit Step Function and Its 

              Derivative 

 

Also note that the area under the f0 curve is unity, i.e., 

 Since, in the limit as   approaches zero, 

we can also define the corresponding value of U0 as 

U0(t) is called the unit impulse function.  But it is also known 

as the Dirac delta distribution,  (t).  Hence, 

This function is shown in Figure A.3a as an arrow with a value of 

infinity above it, while the number 1 placed alongside the arrow 

serves to remind us that the area under the curve is unity. 
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 Fig. A.3  The Unit Impulse Function 

 

 The unit impulse function can also be displaced along the 

axis by setting   = t - a.  In terms of  , the most useful 

properties of the unit impulse function can then be summarized as 

follows: 

 

 1.  Its value is 

 

 

 2.  Its integral, consistent with Eq. (A.3), is 

  but only in the sense of Stieltjes and Lebeseque 

integration, because a limiting process was employed in 

the definition of U0; and 

 

 3. Its integral with respect to the continuous function 

f(t) is 

 ; a    t  for  0  =  a)  -  (tU0   (A.9) 

 a),  -  (tU  =  dt a)  -  (tU 1-0

t

-   (A.10) 

 f(a),  =  dt a)  -  (tU  f(a)  =  dt a)  -  (tUf(t) 0

+a

-a
0

0

+

- 










lim  (A.11) 
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  where use has been made of the mean-value theorem to 

derive the final result. 

 

The property given by Eq. (A.11) is extremely useful, and is 

sometimes called the sampling property of the impulse function. 

 Successive differentiation of the unit impulse function 

leads to other singularity distributions such as the unit 

doublet, etc.  These will not be discussed here. 
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 APPENDIX B 
 

THE LAPLACE TRANSFORM 
 

 A transform is, in effect, a type of mapping of one function 

into another.  The transformation is accomplished by performing a 

definite integral of the original function, weighted by a 

suitable factor that contains the transform variable, over the 

range of the original independent variable.  In the case of the 

Laplace Transform, the original independent variable is t; the 

transform variable is the complex quantity s, the weighting 

function is e
-st
 and the integral is taken over the range of t = 0 

to t = .  Hence, the Laplace Transform, F (s), of a function, 

f(t), is defined as 

if the integral exists. 

 The primary utility of a transformation of this type is that 

it can be used to simplify the solution of a different equation. 

A linear differential equation in f(t) can be converted into a 

much simpler equation in (s)F , often an algebraic equation, and 

the initial conditions are automatically included.  The resulting 

equation is usually considerably easier to solve than the 

original differential equation.  Of course, one never gets 

something for nothing.  In this case, the ease obtained in 

solving the transformed equation must be paid for by the 

difficulty met in converting the solution back to the original 

variable.  For the Laplace Transform, the inverse transform is a 

line integral in the complex s-plane that lies parallel to the 

imaginary axis.  The inverse transform is of the form 

 L[f(t)],    dt ef(t)   =  (s)F -st

0



 (B.1) 

  ,(s)FL    ds e(s)F  
i2

1
  =  f(t) 1-st

i+

i-









 (B.2) 
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where   is a small real number which is employed to assure 

convergence of the result.  Fortunately, in most practical cases, 

the contour can be closed by an infinite semicircle, and then use 

can be made of Cauchy's theorem to evaluate the contour integral 

in terms of the residues of the enclosed singularities.  In fact, 

extensive tabulations of inverse transforms exist, so that the 

primary work involved in obtaining the inverse of a particular 

transform is the algebra required to manipulate the transformed 

solution into a sum of recognizable pieces.  This will be 

illustrated shortly. 

 Some of the most important properties of Laplace Transforms, 

which assist in solving differential equations, are the 

following: 

 

 1.  Additivity or linearity property 

 2.  Differentiation property 

where f(0+) is the initial condition of the function f(t), and, 

in general, 

where |
dt

fd
+=0t1-n

1-n

 is the initial value of the (n-1)th derivative of 

f(t). 

 

 

 

 (s).GB  +  (s)FA  =Bg(t)]    +  L[Af(t)  (B.3) 

                      ,f(0+)  -  (s)F  s=  
dt

df
L 








                      (B.4) 

             ,|
dt

fd
  -  ..  -  |

df

df
s  -  f(0+)s  -  (s)Fs  =  

dt

fd
L

+=0t1-n

1-n

+=0t

2-n1-nn

n
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 (B.5) 
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 3.  Integration property 

 and 

 

 where the initial condition is the integral 

 4.  Linear transformation property 

 5.  Treatment of non-constant coefficients 

 and 

 etc.  Note that equations with non-constant coefficients in 

the original variable are not algebraic in the transform 

variable. 

 6.  Translation property 

 7.  Convolution property 

   ,
s

(s)F
  =  d )f(L

t

0
  (B.6) 

   ,
s

(0+)f
  +  

s

(s)F
  =  d )f(L

-1
t

-
   (B.7) 

 .d )f(  =  (0+)f
t

-
+0t

-1
 


lim  (B.8) 

 a).  +  (sF  =f(t)]  eL[ -at  (B.9) 

 ,
ds

(s)Fd
   =L[tf(t)]    (B.10) 

 ,d )(F  =  
t

f(t)
L
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 (s).Fe  =  a)  -  (tUa)  -  L[f(t -as
1-  (B.12) 

   (s).G(s)F  =  d ))g(  -  f(tL
t
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 Note that the convolution integral of two functions is 

converted into the product of two transforms.  This simple 

result is one of the key features that allows dynamic 

systems to be analyzed in terms of their transfer functions. 

 

 8.  Initial value 

 if the limits exist. 

 

 9.  Final value 

 Consider the problem of solving an nth order, inhomogeneous, 

ordinary differential equation with constant coefficients.  When 

the differentiation property given by Eq. (B.5) is applied 

successively to each derivative term, the result is the transform 

of the function multiplied by a suitable power of s plus terms 

corresponding to the initial conditions.  These terms can be 

summed by virtue of the additivity property given by Eq. (B.3).  

The inhomogeneous term must also be transformed.  The resulting 

expression can then be manipulated algebraically into the 

solution form 

where P(s) contains terms proportional to the initial conditions 

and to the inhomogeneous part of the differential equation, and 

Q(s) is a polynomial in s.  Eq. (B.16) must now be inverted to 

find f(t).  We first obtain the characteristic equation of the 

system by setting Q(s) equal to zero.  This polynomial can be 

factored into a product of the type 

 (s),F s  =  f(t) 
s0t
limlim



 (B.14) 

 (s). F s  =  f(t) 
0st

limlim


 (B.15) 

 ,
Q(s)

P(s)
  =  (s)F  (B.16) 
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where for the sake of generality the root s1 is shown repeated  

r = 2 times, while the other roots s2,..., sn are distinct.  In 

the case where P(s) is a polynomial of order less than Q(s), the 

method of partial fractions can then be used to put the solution 

into the form 

The coefficients of each of the terms are found as follows:  for 

the simple roots, 

while for the repeated roots, 

 When P(s) is not a polynomial, but contains roots of its 

own, then Eq. (B.16) must be rewritten as a sum of the form 

The P1(s), etc. are polynomials, and the Q1(s), etc. are obtained 

by augmenting the characteristic equation, Eq. (B.17), with the 

roots of the corresponding terms from P(s).  The partial fraction 

expansion is then applied separately to each of the terms in Eq. 

(B.21).  The reason for putting the solution for (s)F  into the 

form of Eq. (B.18) is that the inverse transform of contributions 

of the type 1/(s - s1)
r
 are tabulated, and therefore they are 

easily evaluated.  Hence, the final solution in terms of the 

 0,  =  )s  -  (s ... )s  -  (s)s  -  (s  =  Q(s) n1

r

1  (B.17) 

                   .
)s  -  (s
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)s  -  (s

K
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1+r

r

1

r

1

1
 (B.18) 

   n; ,... 1,  +  r  =  i  for     ,(s)F)s  -  (s  =  K i s=si
i

 (B.19) 

                   1.  -  r  ,...   ,2,1 0,  =  k   for     ,(s)F)s  -  (s
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d

k!

1
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original variable is 

which becomes nothing more than a sum of the coefficients Ki 

times the corresponding tabulated inverses.  A short tabulation 

of some of the more useful transform pairs appears in Table B.1. 

 

 Table B.1  Laplace Transform Pairs 
    

0  >  t  for  f(t)  (s)F  

(t)  =  (t)U 0   1 

1  =  (t)U 1-  

s

1
 

t  =  (t)U 2-  

s

1
2
 

e
-at  

a  +  s

1
 

te
-at  

)a  +  (s

1
2
 

1)!  -  (n

et
-at1-n

 
)a  +  (s

1
n
 

t  sin  




22   +  s
 

t  cos  


22   +  s

s
 

 
 

 As an example of the procedure to be followed, consider the 

following inhomogeneous, second-order, ordinary differential 

equation with constant coefficients: 

 

   ,(s)FL  =  f(t) 1
 (B.22) 
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where the initial values are 

By taking Laplace Transforms, this equation is reduced to the 

algebraic form 

We solve for (s),X  obtaining 

 

Now we must find x(t). 

 The characteristic equation is simply 

which can be factored into the form 

Hence, s1 = 0 and s2 = -2.  The transformed solution, (s),X  is 

Now, the partial fraction expansion of the first term is simply 

 1,  =  
dt

dx
2  +  

dt

xd
2

2

 (B.23) 
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which could have been found by inspection.  The partial fraction 

expansion of the second term, which contains a repeated root, is 

Hence, the final solution can easily be obtained with the aid of 

Table B.1.  This solution is 

where the first term corresponds to the general solution and the 

last three terms correspond to the particular or forced solution 

of the differential equation.  It is a simple matter to show that 

this solution indeed corresponds to the differential equation and 

the given initial conditions. 
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 APPENDIX C 
 

Matrix Relationships 
 

 It is assumed that the reader has a working knowledge of 

vectors and matrices.  Therefore, only some of the more useful 

properties of matrices and matrix relationships will be presented 

here, without proof.  The discussion will be limited to square 

matrices with real components. 

 A system of linear equations can be written compactly in 

summation form as 

It is convenient to rewrite these equations in the shorthand 

matrix form 

When A is a square matrix, the solution is simply 

if the inverse of A  exists.  This condition is met when the 

determinant of A  is nonzero, i.e., we obtain a solution when 

 A number of computer programs exist which can be used to 

compute the determinant and the inverse of a matrix.  These 

programs are available at most computer installations. 

 The primary reason for working with the matrix form of the 

equations is the fact that the set of equations can be 

manipulated by simply manipulating the vectors and matrices.  

Moreover, a considerable amount of information about the nature 

 n.1,2,...,  =  i  for     ,k  =  xa ijij

n

j=1

  (C.1) 

 . k = xA    (C.2) 

 , kA = x
-1

   (C.3) 

 . 0  |A| = Adet       (C.4) 
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of the solution can be obtained by examining the properties of 

the matrices.  Of special interest are the eigenvalues of the 

matrix and the norms of the matrix and its eigenvectors.  We will 

discuss these later. 

 A few of the useful matrix manipulation properties are 

summarized below.  For example, we know that the product of a 

matrix and its inverse is equal to the identity matrix I , which 

has ones on the diagonal and zeros elsewhere.  Hence, 

The transpose of the product of two matrices is the product of 

the transposes in reverse order, i.e., 

In general, matrix manipulation is not commutative.  A similar 

expression holds for inverses, namely 

But since determinants are simply numbers, the order is 

irrelevant, and 

 The characteristic equation of a square matrix A  is given 

the expression 

The determinant is a polynomial in   of degree equal to the 

order of the matrix A , which is n in this case.  If A  

represents the system matrix in a matrix differential equation, 

then this is the same characteristic equation as is obtained 

using Laplace Transforms.  The polynomial can also be factored 

into a product of terms of the form 

 .I  =  AA  =  AA
-1-1

 (C.5) 

 .AB  =  ]BA[
TTT
 (C.6) 

 .AB  =  ]BA[
-1-1-1
 (C.7) 

 .|A||B|  =  |B||A|  =  |BA|  (C.8) 

 0.  =  )I  -  Adet (  (C.9) 
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The numbers,  i, are the eigenvalues of the matrix A .  The 

spectral radius of the matrix A  is defined as the magnitude of 

its largest eigenvalue, i.e., 

 In many cases, such as the reactor balance equation and the 

poisoning and depletion equations, all of the  i are distinct.  

We shall restrict ourselves to this case.  Then, for each  i 

there is at least one right eigenvector u i, which corresponds to 

the equation 

There is also at least one left (adjoint) eigenvalue v
T

i
 which 

corresponds to the equation 

Using Eq. (C.7), this can be rewritten as 

 The Cayley-Hamilton theorem states that a matrix satisfies 

its own characteristic equation, i.e., 

This important result implies that matrix functions can be 

expressed in terms of the same functional form which operates on 

the eigenvalues of the matrix.  For distinct eigenvalues, 

Sylvester's theorem states that the arbitrary matrix function 

N(A) is given by the expression 
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For example, consider the inhomogeneous, first-order, matrix 

differential equation, 

where the initial conditions are X (0) = X 0.  If A  is constant 

with respect to time, then this equation has the formal solution 

Note that this is not the correct solution when A  is not a 

constant because matrix operations do not generally commute.  The 

exponential function of a matrix is itself a matrix, which can be 

evaluated with the aid of Sylvester's theorem.  While the 

procedure appears to be tedious, it is readily found that 

alternate methods are even more time consuming when the order of 

the system of equations is n = 4 or larger. 

 A norm of a vector u  is a means of describing its magnitude 

in some sense.  The lp norm, denoted by the expression ||  ||
p
 is 

defined for a positive values of p by the expression 

The commonly used vector norms are the following: 

 

 1. The l1 norm is the sum of the lengths of the vector 

components, 

 .
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 2. The l2, or Euclidean, norm is the length of the vector, 

 3. The l norm is the length of the largest vector 

component, 

 The matrix norm which is subordinate to the lp vector norm 

is denoted by the symbol |  |
p
.  The spectral norm of a matrix is 

defined by the expression 

When A is real, |A|
2
 is equal to the square root of the spectral 

radius ).AA
T

(   The spectral radius is, in turn, related to the 

convergence properties of various matrix iterative schemes, etc. 
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 APPENDIX D 

 

 

Spherical Harmonics 
 
  When the Helmholtz equation, 0,   =   B  +  22   is written in 

spherical coordinates, it has the form 

If one assumes that a separation of variables of the form 

),R(r)Y(  =  ),(r,   is valid, then the angular portion of the 

separated equation becomes 

where  2
 is the separation constant.  Solutions of Eq. (D.2) 

exist only when  2
 takes on the discrete values 

 Equation (D.2) can again be separated into a product 

solution Y(  , ) = P( )F( ).  The equation in   is of the form 

where m is an integer.  This equation has periodic solutions that 

are proportional to e
imφ
.  The remaining portion in the variable 

  obeys the differential equation 

where m = 0, ±1 ,..., ± l , for l  = 0,1..., where .    x cos   The 

               0.  =  B  +  
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solutions of Eq. (D.5) are the associated Legendre functions P
m
1 . 

 When m = 0, Eq. (D.5) reduces the Legendre equation, whose 

solutions are the Legendre polynomials Pl .  These polynomials are 

defined by the relationships 

and 

They obey the recursion relationships 

and 

 When m  0, the general definition for the associated 

Legendre functions is given in terms of the Legendre polynomials 

by the equation 

The corresponding recursion relations are 

and 

For negative values of m, 

 1  =  (x)P0  
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The associated Legendre functions also satisfy an orthogonality 

relationship of the form 

 When the   and   portions of the solution are combined to 

form the angular solution Y(  , ), and the normalization 

coefficient from Eq. (D.13) is included, then the results are the 

2l + 1 spherical harmonics defined by the equations 

and 

where Y
*
lm  is the complex conjugate of .Y lm  

The spherical harmonics are orthonormal in the sense that 

 

Hence, they can be used for the purpose of expanding any function 

of   and   in a Fourier series.  The coefficients of the 

expansion can easily be obtained using the orthogonality property 

of the spherical harmonics. 

 An important application of spherical harmonics is to the 

problem of neutron scattering, wherein a neutron which is 

originally traveling in the direction ),( 


 is scattered into 

the direction ).,(  


  The angle of scattering is the dot, or 

vector, product of the two unit direction vectors, namely 
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But, 

so that upon substitution into Eq. (D.17) we obtain 

 

 The spherical harmonics satisfy a very important theorem, 

known as the Addition Theorem, which states that 

Using the expressions for Ylm and Yl,-m given by Eqs. (D.14) and 

(D.15), this theorem can be reduced to the useful form 

 The significance of the Addition Theorem, as given by Eq. 

(D.21), should not be missed.  This theorem relates the 

directional change of a neutron in a scattering collision to the 

associated Legendre functions and Legendre polynomials of the 

before and after states.  The differential angular scattering 

cross sections, which are only a function of the change in 

direction, are thereby connected to the actual angular neutron 

flux distribution.  Moreover, the relationship is obtained in 

terms of functions whose orthogonality properties can be used to 

greatly simplify the ensuing equations.  The result, of course, 

is the well-known Pn method of solving the Boltzmann transport 

equation. 
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 APPENDIX E 

 

 

Differentiation of an Integral 
 

 One of the standard methods that is used to solve an 

integral equation is to differentiate the equation, manipulate 

the result and then reintegrate to obtain the final solution.   

In order to facilitate this operation, we make use of Leibniz's 

theorem, which states that the derivative of an integral is 

composed of three parts, namely: 

 

 1. the integrand, evaluated at the upper limit of the 

integral times the derivative of the upper limit; 

 2. minus the integrand, evaluated at the lower limit of 

the integral, times the derivative of the lower limit, 

and 

 3. the integral of the derivative of the integrand. 

 

In equation form, Leibniz's theorem is written as 

 One should note that if either limit is a constant, the 

corresponding term does not contribute to the result.  Likewise, 

if the variable of differentiation does not appear explicitly in 

the integrand, then this term contributes nothing. 

 

 

 

 

 

 

            dx. 
y
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addition theorem  95,546  

adjoint equations     

 continuous  237-242  

 inhomogeneous  259-262 

 matrix  244-247 

adjoint flux  238,295-300 

adjoint operators 

 continuous 238-243 

 matrix  244-247 

Adler-Nordheim L-function  458 

age,    5 

albedo,    120,174 

alpha 

 capture-to-fission,    61 

energy exchange fraction,   

 40, 369 

asymmetry in binding  52-54 

atom density  10 

average logarithmic decrement,    
387-388 

 

backward difference  232 

Bessel  functions 

 I and K  132-134 

 J and Y  154-156 

 spherical  157-160 

beta 

 delayed neutron fraction, β  

72, 270-271 

 effective delayed neutron   

fraction,     280, 299 

binding energy 

 of a nucleus  52-54 

 of last neutron  52 

blackness,    120,174 

Boltzmann transport equation   

 energy-dependent  374 

 one-dimensional  90-96 

 one-speed  84-89 

 thermal  478 

boundary conditions 

 diffusion theory  114-120 

 source plane  121 

 transport theory  117 

Breit-Wigner cross section  30, 408-409 

 Doppler broadened  417-419 

buckling, B
2
  5, 146,190 

 

Cayley-Hamilton theorem  539 

cell calculations   

                  resonance 441-446 

                  thermalization 509-514 

center-of-mass system  33-46, 374-378, 

437-440 

cent, reactivity  290 

central difference  232 

characteristic equation  530, 538-539 

collision density 

 total  395 

 partial  381-385 

 scattering  376-377 

 successive  402 

compound nucleus  19-21, 411 

 cross section  26-27, 407-408 

 maximum cross section  409 

control rod worth  255-259, 261-262 

convergence 

 inner iterations  208-215 

 outer iterations  215-226 

convolution integral  529 

Coulomb repulsion  56 

critical energies for fission  60 

cross section 

 CM to LAB  40-45, 494-499 

differential angular  40-

45,366-374 

 few-group  185-190 

 macroscopic  10 

 microscopic  9 

 scattering transfer  497-499, 

515 

 threshold  61 

 transport  101 

cylindrical reactor  131-135, 154-156 

 

Dancoff-Ginsberg Correction  398-400 

DEAF  B
2
 notation  191 

delayed critical  287 

delayed neutrons  72 

 emitters 25  

 energies  272 

 yields and half lives  271 

delayed neutron precursors  72 

 balance equations  272 

depletion  349-355 

detailed balance  515 

diffusion coefficient  17, 101, 473, 509 

diffusion equation 

 energy-dependent kinetic  

270-274 

 energy-dependent static  185 

 few-group kinetic  274-276 

 few-group static  185-191 

one-speed  77-83, 96-

102,106-108 

diffusion length, L
2
  5, 143, 146 

 experiment  167-173 

Dirac delta function  523 

disadvantage factor  177-178 

dollars, reactivity  290 

dominance ratio  226 

Doppler effect  414-422 

Doppler functions,  , 423 

Doppler width  419 

Dresner J-Function  430 

 

effective delayed neutron fraction,   
      299 
effective neutron density  297 

effective precursor concentration  300 

effective source  300 

eigenvalue problem 

 continuous  143-144 

 matrix  215-221 

eigenvalue separation  253 

eigenvector, fundamental mode  222-225 

escape probability  447-450 

eta,    3, 62 

exponential experiment  169-173 

extrapolated boundary 

 diffusion theory  116-117 

 transport theory  117 

 

fast fission factor,    4 

fertile nuclei  62 

few-group diffusion equations 

 dynamic  274-276 

 static  185-190 

few-group energy structure  186 

Fick's law  78-81 

finite difference form, 

 few-group equations  191-202 

fissile nuclei  62 

fission  54-67 
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 energy production  73 

 liquid drop model  54-62 

fission neutron spectrum  65-66 

fission product yields  24-25, 62-64 

flux (see neutron flux) 

forward difference   232 

forward-elimination backward- 

substitution method  202-208 

four factor formula  3 

fuel management  355-356 

 

generation time  302 

Green's function  125, 129-131, 134, 138-

140,178,452-455 

Green's theorem  139 

 

harmonic flux modes  145-153,226 

heterogeneous cell  425, 512 

heterogeneous neutron balance equation  

513-514 

 

Inhour equation 282,285,288 

inner iteration  208-215 

inner product  222 

interface conditions  114-115 

iodine  312-321 

iterative solution 

 eigenvalue problem  215-221 

 source problem  208-215 

 

Jacobian, cross section transformation 

 43 

J-Function  430 

 

k-effective  5 

k-infinity  3 

kernal 

 line  134 

 plane  125 

 point  129 

kets  239 

kinematics 

 center-of-mass system  33-40, 

366-374 

 laboratory system  33-40, 

366-374 

kinetics 

 point  280-291 

 spatial  276-280 

 

lambda modes  143-145,325 

Laplace transforms  526-534 

Legendre functions  542-545 

Legendre polynomials  94,544 

Leibniz's theorem  549 

lethargy, u  7, 377-378 

level widths,    28-30, 360 

lifetime, l  301-302 

liquid drop model  55-60 

 

magic numbers  23, 53-56 

 delayed neutrons  23,72 

mass parabolas  71 

matrix relationships  537-541 

Maxwellian distribution of 

 atom velocities  415, 490 

Maxwell-Boltzmann neutron distribution  

12, 502,507 

mean chord length  446-449 

mean free path  33 

 transport 46 

mesh box integration  191-200 

 at boundary  200-202 

mu, average cosine,    43-44 

multidimensional reactors, separable  

164-167 

multigroup (see few-group) 

 

narrow resonance approximation  

 IR  428 

 NR  427-432, 456-457 

 NRIM  428,432-433, 458 

 WR  432-433 

neutron cross section 

 1/v  12 

 thermal absorption  491 

neutron current  79-81,101, 107-108 

neutron density distribution function  7 

 effective 297 

neutron energy, change in scattering  37-

40, 369 

neutron flux 

 angular  11,75 

energy-dependent  11, 183-

185 

 group  185-191 

 scalar  11  

neutron leakage 

 diffusion equation  82-83 

 transport equation  85-88,96  

neutron moderation (see slowing down) 

neutron scattering 

 elastic  19-22 

 inelastic  19-22 

neutrons 

 delayed  71-72, 271 

 prompt  66-67 

nonabsorption probability  4, 393-400 

norm 

 Euclidean  210, 541 

 spectral  539 

nu,    62,67-69 

nuclear systematics  26-28 

 

omega modes  307 

one-speed 1-D transport equation  90-96 

orthogonality of lambda modes 

 continuous  242-243 

 matrix  244-245 

outer iteration  215-226 

overrelaxation  215 

 

P1 

 boundary conditions  100 

 diffusion theory  102 

 equations  100-102 

Pn equations  93-94 

partial currents 114-116 

period  285 

perturbation theory, first order  247-252 

point kinetics 

 derivation  296-301 

 equations  280-287 

 solutions  287-293 

poisoning  314-319,328-331 

potential scattering  411 

power  148, 164, 167 

prompt critical  287 

prompt jump  290 

 approximation  291-292 

pulsed neutron source  295 

 

Q value  48-49  

 fission  56-57 

 

reaction probabilities  31-33 

reaction rates  10, 11 

reactivity  249-, 255 

 fundamental mode  249-252 

 higher modes  252-253 

reciprocity theorem  452-455 

reduced mass, m   37, 489 

resonance capture cross section  410 

resonance escape probability, p  3, 435 

resonance integrals 

 correlation  464 
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 heterogeneous  457-458 

 homogeneous  436-438 

resonance scattering cross section  411 

rod bump  293 

rod drop  294 

 

samarium poisoning  328-331 

scattering mechanics  366-374, 492-499 

 

semiempirical binding energy formula 53-

54 

singularity functions  521-525 

slab reactor  145-153 

slowing down, A > 1 

 asymptotic  385-389 

 constant sa  / s  395-396 

 no absorption  380-389 

slowing down equation  374-

378 

 slowing varying capture  397-

401 

slowing down density  378-379 

slowing down in hydrogen 

 no absorption  378-380 

 with absorption  389-394 

slowing down 

 GAM equations  465-478 

 parameters  388 

 with resonances  422-426 

sources 

 line  133 

 plane  122 

 point  129 

 uniformly distributed  135-

136 

source jerk  294 

source problem 

 direct matrix inversion  202-

208 

 iterative matrix inversion  

208-215 

spatial kinetics  270-280 

spectral radius  210, 539 

spherical harmonics  543-546 

spherical reactor  157-160 

spin pairing  27-28 

state variables  347 

subcritical multiplication  294 

superposition integral  138 

Sylvester's theorem  283, 538-539 

 

Taylor series expansion  193-195 

temperature coefficients  331-337 

temperature feedback  337-349 

temperature, neutron  503 

thermalization 

 general case  503-509 

 monatomic gas  500-501 

 space dependent  509-515 

thermal utilization factor, f   4 

 

unit impulse function  524 

unit step function  521 

unit ramp 522 

UVAR reactor, two group properties  266 

vector relationships  537-541 

Volterra equation  376 

 

Wigner-rational approximation  449 

Wigner-Wilkins thermalization  500-501 

worth, control rod  255-259 

 

xenon 

 cross section  312 

 oscillations  321-337 

 poisoning  314-319 

  stability criterion  326-327 

 yield  312 

 


